In this paper,a new compact ultrawideband(UWB)circularly polarized(CP)antenna array for vehicular communications is proposed.The antenna array consists of a 2×2 sequentially rotated T-shaped cross dipole,four par...In this paper,a new compact ultrawideband(UWB)circularly polarized(CP)antenna array for vehicular communications is proposed.The antenna array consists of a 2×2 sequentially rotated T-shaped cross dipole,four parasitic elements,and a feeding network.By loading the T-shaped cross dipoles with parasitic rectangular elements with cut corners,the bandwidth can be expanded.On this basis,the radiation pattern can be improved by the topology with sequential rotation of four T-shaped cross-dipole antennas,and the axial ratio(AR)bandwidth of the antenna also can be further enhanced.In addition,due to the special topology that the vertical arms of all Tshaped cross dipoles are all oriented toward the center of the antenna array,the gain of proposed antenna is improved while the size of the antenna is almost the same as the traditional cross dipole.Simulated and measured results show that the proposed antenna has good CP characteristics,an impedance bandwidth for S11<-10 d B of about 106.1%(3.26:1,1.57-5.12 GHz)and the 3-d B AR bandwidth of about 104.1%(3.17:1,1.57-4.98 GHz),a wide 3-d B gain bandwidth of 73.3%as well as the peak gain of 8.6 d Bic at 3.5 GHz.The overall size of antenna is 0.56λ×0.56λ×0.12λ(λrefers to the wavelength of the lowest operating frequency in free space).The good performance of this compact UWB CP antenna array is promising for applications in vehicular communications.展开更多
A4-port multiple-input multiple-output(MIMO)antenna exhibiting lowmutual coupling andUWBperformance is developed.The octagonal-shaped four-antenna elements are connected with a 50microstrip feed line that is arranged...A4-port multiple-input multiple-output(MIMO)antenna exhibiting lowmutual coupling andUWBperformance is developed.The octagonal-shaped four-antenna elements are connected with a 50microstrip feed line that is arranged rotationally to achieve the orthogonal polarization for improving the MIMO system performance.The antenna has a wideband impedance bandwidth of 7.5GHz with S11<−10 dB from(103.44%)3.5–11GHz and inter-element isolation higher than 20 dB.Antenna validation is carried out by verifying the simulated and measured results after fabricating the antenna.The results in the form of omnidirectional radiation patterns,peak gain(≥4 dBi),and Envelope Correlation Coefficient(ECC)(≤0.01)are extracted to validate the suggested antenna performance.Aswell,time-domain analysis was investigated to demonstrate the operation of the suggested antenna in wideband applications.Finally,the simulated and experimental outcomes have almost similar tendenciesmaking the antenna suitable for its use in UWBMIMOapplications.展开更多
Metamaterials(MTM)can enhance the properties of microwaves and also exceed some limitations of devices used in technical practice.Note that the antenna is the element for realizing a microwave imaging(MWI)system since...Metamaterials(MTM)can enhance the properties of microwaves and also exceed some limitations of devices used in technical practice.Note that the antenna is the element for realizing a microwave imaging(MWI)system since it is where signal transmission and absorption occur.Ultra-Wideband(UWB)antenna superstrates with MTM elements to ensure the signal transmitted from the antenna reaches the tumor and is absorbed by the same antenna.The lack of conventional head imaging techniques,for instance,Magnetic Resonance Imaging(MRI)and Computerized Tomography(CT)-scan,has been demonstrated in the paper focusing on the point of failure of these techniques for prompt diagnosis and portable systems.Furthermore,the importance ofMWIhas been addressed elaborately to portray its effectiveness and aptness for a primary tumor diagnosis.Other than that,MTM element designs have been discussed thoroughly based on their performances towards the contributions to the better image resolution of MWI with detailed reasonings.This paper proposes the novel design of a Zeroindex Split RingResonator(SRR)MTMelement superstrate with a UWB antenna implemented in MWI systems for detecting tumor.The novel design of the MTM enables the realization of a high gain of a superstrate UWB antenna with the highest gain of 5.70 dB.Besides that,the MTM imitates the conduct of the zeroreflection phase on the resonance frequency,which does not exist.An antenna with an MTM unit is of a 7×4 and 10×5 Zero-index SRR MTM element that acts as a superstrate plane to the antenna.Apart from that,Rogers(RT5880)substrate material is employed to fabricate the designed MTM unit cell,with the following characteristics:0.51mm thickness,the loss tangent of 0.02,as well as the relative permittivity of 2.2,with Computer Simulation Technology(CST)performing the simulation and design.Both MTM unit cells of 7×4 and 10×5 attained 0°with respect to the reflection phase at the 2.70 GHz frequency band.The first design,MTM Antenna Design 1,consists of a 7×4 MTM unit cell that observed a rise of 5.70 dB with a return loss(S11)−20.007 dB at 2.70 GHz frequency.The second design,MTM Antenna Design 2,consists of 10×5 MTM unit cells that recorded a gain of 5.66 dB,having the return loss(S11)−19.734 dB at 2.70 GHz frequency.Comparing these two MTM elements superstrates with the antenna,one can notice that the 7×4 MTM element shape has a low number of the unit cell with high gain and is a better choice than the 10×5 MTM element in realizing MTM element superstrates antenna for MWI.展开更多
The antenna plays an essential role in the medical industry.The short-range 5th Generation(5G)communication can be used for seamless transmission,reception,patient monitoring,sensing and measuring various processes at...The antenna plays an essential role in the medical industry.The short-range 5th Generation(5G)communication can be used for seamless transmission,reception,patient monitoring,sensing and measuring various processes at high speeds.A passive Ultra Wide Band(UWB)antenna,used as a sensor in the mea-surement of Prothrombin Time(PT)i.e.,blood clot is being proposed.The inves-tigated micro-strip patch UWB antenna operating in the frequency range of 3.1 to 10.6 GHz consists of a circular patch with a diamond-shaped slot made of jeans substrate material with good sensing properties is accomplished by adjusting the copper thickness of the patch.Due to the turbidity in blood plasma,PT measure-ment is the repetitive approach to get accurate value.In order to solve this issue,an antenna is designed,fabricated and analysed to obtain the accurate PT mea-surements from blood plasma.The blood clotting is observed by electromagnetic emitted voltage converted into the frequency range of 5 to 10 GHz and voltage range of 0.66 to 0.87 mV.The circular UWB antenna is constructed employing jean’s substrate with a partial ground plane to improve the S-parameter,gain,bandwidth and performance characteristics.The proposed antenna with Specific Absorption Rate(SAR)value within the acceptable range can be used as a wear-able device in the human body,leveraging 5G technology.This antenna is well suited for various other applications like wireless sensors,wearable devices and short-range communication applications.展开更多
A simple and compact microstrip-fed ultra wideband (UWB) printed monopole antenna with band-notched performance is proposed for wireless universal serial-bus (WUSB). The antenna is composed of a U-shaped line radi...A simple and compact microstrip-fed ultra wideband (UWB) printed monopole antenna with band-notched performance is proposed for wireless universal serial-bus (WUSB). The antenna is composed of a U-shaped line radiator and a small strip bar and is partially grounded, so that the measured impedance bandwidth of the antenna is about 7. 88 GHz covering 3. 12 to 11 GHz with VSWR below 2, and the expected band rejection of 5.06 to 5. 89 GHz is also obtained. The characteristics of the proposed antenna are analyzed, and the geometric parameters for optimal performance are investigated in detail. A relatively stable, quasi-omnidirectional and quasi-symmetrical radiation pattern is also found. The proposed band-notched UWB antenna requires no external filters to avoid interference with other systems, and thus, greatly simplifies the system design of an ultra wideband WUSB communication system.展开更多
In order to broaden the bandwidth of a tapered slot- line antenna (TSA), a bilateral tapered slot-line antenna (BTSA) with a new feeding structure of coplanar waveguide (CPW) is developed. Based on the fact that...In order to broaden the bandwidth of a tapered slot- line antenna (TSA), a bilateral tapered slot-line antenna (BTSA) with a new feeding structure of coplanar waveguide (CPW) is developed. Based on the fact that the bandwidth limitation of TSA mainly depends on its feeding structure, an improved CPW-based feed structure etched on the backboard of the BTSA is adopted to perform traveling-wave transition. Both the simulation results and measurement data verify that the proposed feeding structure results in "high-pass" frequency response for antenna impedance matching. The voltage standing wave ratio (VSWR) is less than 2:1 when the frequency is higher than 3 GHz. The antenna gain exceeds 7 dBi with good radiation patterns when the bandwidth is from 4 to 16 GHz. This ultra wideband (UWB) antenna with a compact size is specially available for the electronic systems of counter-measure and microwave imaging.展开更多
In this paper,a low cost,highly efficient and low profile monopole antenna for ultra-wideband(UWB)applications is presented.A new inverted triangular-shape structure possessing meander lines is designed to achieve a w...In this paper,a low cost,highly efficient and low profile monopole antenna for ultra-wideband(UWB)applications is presented.A new inverted triangular-shape structure possessing meander lines is designed to achieve a wideband response and high efficiency.To design the proposed structure,three steps are utilized to achieve an UWB response.The bandwidth of the proposed antenna is improved with changing meander lines parameters,miniaturization of the ground width and optimization of the feeding line.The measured and simulated frequency band ranges from 3.2 to 12 GHz,while the radiation patterns are measured at 4,5.3,6 and 8 GHz frequency bands.The overall volume of the proposed antenna is 26×25×1.6 mm^(3);whereas the FR4 material is used as a substrate with a relative permittivity and loss tangent of 4.3 and 0.025,correspondingly.The peak gain of 4 dB is achieved with a radiation efficiency of 80 to 98%for the entire wideband.Design modelling of proposed antenna is performed in ANSYS HFSS 13 software.A decent consistency between the simulated and measured results is accomplished which shows that the proposed antenna is a potential candidate for the UWB applications.展开更多
This paper introduces the advances of ultra-wideband (UWB) and super-wideband (SWB) planar antennas based on the printed monopole, microstrip slot and other planar antenna designs in the last decade. A brief histo...This paper introduces the advances of ultra-wideband (UWB) and super-wideband (SWB) planar antennas based on the printed monopole, microstrip slot and other planar antenna designs in the last decade. A brief history of the ultrawideband antennas is first provided. Several types of planar antennas for UWB systems with band-notched designs are reviewed. Special SWB planar antenna designs with the bandwidth ratio greater than 10:1 including metal-plate and printed monopole antennas and tapered slot antennas are presented and compared.展开更多
A new type of ultra-wideband (UWB) printed monopole antennas is presented, which is composed of a circular or armular patch and a trapeziform ground plane with a tapered CPW feeder in the middle. Both simulated and ...A new type of ultra-wideband (UWB) printed monopole antennas is presented, which is composed of a circular or armular patch and a trapeziform ground plane with a tapered CPW feeder in the middle. Both simulated and experimental results are presented, showing good agreement and therefore verifying validity of the design. The proposed antenna with a circular monopole patch achieves an 11.6: 1 measured ratio bandwidth of VSWR ≤2 ( from 0,79 GHz to 9.16 GHz), while that with an annular patch obtains a measured ratio impedance bandwidth of 10.6:1 (from 0.87 GHz to 9.47 GHz). In addition, these designs exhibit nearly omnidirectional radiation patterns with simple compact structures, which axe attractive in communications and others UWB applications.展开更多
In this paper,a high gain and directional coplanarwaveguide(CPW)-fed ultra-wideband(UWB)planar antenna with a new frequency selective surface(FSS)unit cells design is proposed for UWB applications.The proposed UWB ant...In this paper,a high gain and directional coplanarwaveguide(CPW)-fed ultra-wideband(UWB)planar antenna with a new frequency selective surface(FSS)unit cells design is proposed for UWB applications.The proposed UWB antenna was designed based on the Mercedes artistic-shaped planar(MAP)antenna.The antenna consisted of a circular ring embedded with three straight legs for antenna impedance bandwidth improvement.The modelled FSS used the integration of a two parallel conductive metallic patch with a circular loop structure.The FSS provided a UWB stopband filter response covering a bandwidth of 10.5 GHz,for frequencies from 2.2 to 12.7 GHz.The proposed FSS had a compact physical dimension of 5 mm×5 mm×1.6 mm,with a printed array of 19×19 FSS unit cells.The FSS unit cells were printed on only one side of the dielectric FR4 substrate and placed as a sandwich between the antenna and the reflector ground plane.An equivalent circuit configuration(ECC)was used to verify the FSS unit cell structure’s performance.The simulated results indicated that the UWB MAP antenna and FSS reflector provided a fractional bandwidth of 136%and a high gain of 11.5 dB at 8.5 GHz with an acceptable radiation efficiency of 89%.Furthermore,the gain was improved across the operating band and kept between 8.3 and 11.5 dB.The proposed antenna was in good agreement between theoretical and experimental results and offered a wide enough bandwidth for UWB and vehicle applications.展开更多
This paper proposed integrating the communication system on the garment,which can be utilized to detect breast cancer at an early stage by using an ultra-wideband(UWB)wearable antenna.Breast cancer is an abnormal cell...This paper proposed integrating the communication system on the garment,which can be utilized to detect breast cancer at an early stage by using an ultra-wideband(UWB)wearable antenna.Breast cancer is an abnormal cell that is located in the breast tissue.Early detection of breast cancer plays an important role,and it helps in the long term for all women.The proposed UWB wearable antenna successfully operates at 3.1-10.6 GHz under an acceptable reflection coefficient of−10 dB.The fabricated wearable antenna was made from Shieldit Super and felt both conductive and nonconductive wearable materials.Few measurement studies of bending angles have been carried out that covered 2°,4°,6°,8°,and 10°.In addition,the performance of UWB antennas in wet environments is studied in four stages:in water,instantly wet,nearly dry,and entirely dry.There is good agreement between the measured and simulated outcomes.Based on the experimental results,the proposed antenna could be helpful for a home breast cancer detection system.展开更多
This paper presents the design and analysis of a miniaturized and novel wearable ultra-wideband(UWB)band-notch textile antenna for Body Area Networks(BANs).The major goal of building the antenna for wearable applicati...This paper presents the design and analysis of a miniaturized and novel wearable ultra-wideband(UWB)band-notch textile antenna for Body Area Networks(BANs).The major goal of building the antenna for wearable applications with band notch in X-band is to reject the downlink band(7.25 to 7.75 GHz)of satellite communication in the UWB frequency ranges of 3.1–10.6 GHz to keep away from interference.Computer Simulation Technology(CST)TM Microwave Studio,which is user-friendly and reliable,was used to model and simulate the antenna.The radiating element of the antenna is designed on Jeans’textile substrate,which has a relative permittivity of 1.7.The thickness of the jeans’fabric substrate has been considered to be 1 mm.Return loss,gain,bandwidth,impedance,radiation,and total efficiency,and radiation patterns are presented and investigated.The antenna is simulated placed on the three layers of the human body model,and the on-body results are summarized in comparison with free space.Results and analysis indicate that this antenna has good band-notch characteristics in the frequency range of 7.25 GHz to 7.75 GHz.The parametric study varying the relative permittivity of Jeans’fabric substrate of this antenna is also evaluated.In addition,effects on the antenna parameters of variation of ground plane size have been reported.The antenna is 25 mm×16 mm×1.07 mm in total volume.Results reveal that this antenna achieves the design goal and performs well both in free space and on the body.展开更多
This paper introduces a compact dual notched UWB antenna with an independently controllable WLAN notched band integrated with fixed WiMAX band-notch.The proposed antenna utilizes a slot resonator placed in the main ra...This paper introduces a compact dual notched UWB antenna with an independently controllable WLAN notched band integrated with fixed WiMAX band-notch.The proposed antenna utilizes a slot resonator placed in the main radiator of the antenna for fixed WiMAX band notch,while an inverted L-shaped resonator in the partial ground plane for achieving frequency agility within WLAN notched band.The inverted L-shaped resonator is also loaded with fixed and variable capacitors to control and adjust the WLAN notch.The WLAN notched band can be controlled independently with a wide range of tunability without disturbing the WiMAX bandnotch performance.Step by step design approach of the proposed antenna is discussed and the corresponding mathematical analysis of the proposed resonators are provided in both cases.Simulation of the proposed antenna is performed utilizing commercially available 3D-EM simulator,Ansoft High Frequency Structure Simulator(HFSS).The proposed antenna has high selectivity with experimental validation in terms of reflection coefficient,radiation characteristics,antenna gain,and percentage radiation efficiency.The corresponding measured frequency response of the input port corresponds quite well with the calculations and simulations in both cases.The proposed antenna is advantageous and can adjust according to the device requirements and be one of the attractive candidates for overlay cognitive radio UWB applications and URLLC service in 5G tactile internet.The proposed multifunctional antenna can also be used for wireless vital signs monitoring,sensing applications,and microwave imaging techniques.展开更多
In this letter, a simple monopole antenna with variable band-notched characteristic for ultra wide band (UWB) function is proposed. Two L-shaped quarter-waveguide resonators coupled to the ground plane with two shorti...In this letter, a simple monopole antenna with variable band-notched characteristic for ultra wide band (UWB) function is proposed. Two L-shaped quarter-waveguide resonators coupled to the ground plane with two shorting tracks at the sides of the antenna are used to generate stop-band performance around 5.5 GHz (WLAN). The proposed antenna is fabricated on the substrate FR4 (relative permittivity of 4.7) and has a compact size of 16 × 28.5 × 1.6 mm. The designed antenna has a good impedance matching in 3.1 - 11.4 GHz frequency range with VSWR < 2, except the band 5 - 5.85 GHz.展开更多
The C-band is allocated for commercial telecommunications via satellites. Amateur satellite operations in the frequency range 5.830 to 5.850 GHz for down-links and 5.650 to 5.670 GHz for up-links are allowed by Intern...The C-band is allocated for commercial telecommunications via satellites. Amateur satellite operations in the frequency range 5.830 to 5.850 GHz for down-links and 5.650 to 5.670 GHz for up-links are allowed by International Telecommunication Union. The X-band is used for terrestrial broadband communication, radar applications, and portions of the X-band are assigned for deep space telecommunications. In this paper, a design of 4 × 1 Ultra Wide Band (UWB) antenna array for C-band and X-band applications is introduced. Metamaterial sixteen-unit cells are incorporated into each antenna element for radiation characteristics enhancement purposes. Permeability and permittivity of metamaterial unit cells are obtained all over the operating bandwidth. UWB unequal power divider is used to feed the proposed four elements antenna array based on Chebyshev excitation method. The proposed antenna has a suitable 3 dB beam width and gains all over the operating bandwidth which extends from 5.6 GHz to 10.9 GHz. The proposed antenna covers 60% and 72.5% of the C-band and X-band, respectively. The proposed antenna is fabricated, measured, and good agreement is obtained between simulated and measured results. The obtained performance ensures the suitability of the proposed antenna array for C-band and X-band applications.展开更多
In order to improve the performance of the antenna at low frequency,short circuit branch and coupling feed structure are introduced into the folded broadband single antenna in this paper,then resonant frequency is mer...In order to improve the performance of the antenna at low frequency,short circuit branch and coupling feed structure are introduced into the folded broadband single antenna in this paper,then resonant frequency is merged into the antenna using method of stagger tuning,finally,a UWB antenna is designed to w ork betw een 800 MHz ~ 2700 MHz. Analysis are conducted to determine the antenna's properties. The short-circuit w ire location,feeding point location and the length of folded strip are discussed in detail. The SAR is calculated by HFSS simulation softw are w hile the antenna is close to a 3D human head model. The research results show that the antenna can cover eight commonly used commercial frequency bands at present,and electromagnetic radiation of the antenna has tiny influence on the human head model.展开更多
A simple and compact ultra wideband (UWB) printed monopole antenna with band-notched performance is proposed in this paper. The antenna is partially grounded so that the Q value is depressed and the impedance bandwi...A simple and compact ultra wideband (UWB) printed monopole antenna with band-notched performance is proposed in this paper. The antenna is partially grounded so that the Q value is depressed and the impedance bandwidth is broadened. A small strip bar is loaded on each arm of the similar U-shaped radiator. The impedance bandwidth of the antenna overlap with IEEE 802.11a is rejected consequently. The geometry parameters of the antenna are investigated and optimized with HFSS. The measured bandwidth of the proposed antenna occupies about 7.89 GHz covering from 3.05 GHz to 10.94 GHz with expected notched band from 4.96 GHz to 5.98 GHz. A quasi-omnidirectional and quasi-symmetrical radiation pattern in the whole band is also obtained. As a result, a UWB wireless communication system can be simplified with the band-notched UWB antenna presented.展开更多
Ultra wide bands antennas with notched bands characteristics have recently been considered for efficient communication between devices. In this paper, a compact ultra-wideband antenna (UWB) for UWB applications with t...Ultra wide bands antennas with notched bands characteristics have recently been considered for efficient communication between devices. In this paper, a compact ultra-wideband antenna (UWB) for UWB applications with triple bandnotched characteristics is presented. The proposed antenna consists of a square patch with four truncated corners and a partial ground plane with a rectangular slit. The operation bandwidth of the designed antenna is from 2.66 GHz to more than 13.5 GHz. Band-notched characteristics of antenna to reject the frequency band of 3.18 - 3.59 GHz and 4.70 - 5.88 GHz, is realized by inserting two C-shaped slots in the patch, the third band of 9.54 - 12.22 GHz is achieved by slottype capacitively-loaded loop (CLL) inserted in the patch near the feed line. Details of the proposed antenna design and simulated results are presented and discussed.展开更多
A compact Ultra-WideBand(UWB) slot antenna is presented in this paper. The slot is modified rectangular in shape and asymmetrically cut in the ground plane. A hexagonal patch with two stepped CoPlanar Waveguide(CPW) f...A compact Ultra-WideBand(UWB) slot antenna is presented in this paper. The slot is modified rectangular in shape and asymmetrically cut in the ground plane. A hexagonal patch with two stepped CoPlanar Waveguide(CPW) feed is used to excite the slot. Wider impedance bandwidth is achieved due to the extra inductive reactance created by the asymmetric slot which neutralizes the capacitive reactance of the hexagonal patch. The measured impedance bandwidth of the proposed antenna is 11.85 GHz(2.9–14.75 GHz). The radiation patterns of the proposed antenna are obtained and found to be omni-directional in H-plane and bi-directional in E-plane.展开更多
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grant No.62071306in part by Shenzhen Science and Technology Program under Grants JCYJ202001091-13601723,JSGG20210802154203011 and JSGG-20210420091805014。
文摘In this paper,a new compact ultrawideband(UWB)circularly polarized(CP)antenna array for vehicular communications is proposed.The antenna array consists of a 2×2 sequentially rotated T-shaped cross dipole,four parasitic elements,and a feeding network.By loading the T-shaped cross dipoles with parasitic rectangular elements with cut corners,the bandwidth can be expanded.On this basis,the radiation pattern can be improved by the topology with sequential rotation of four T-shaped cross-dipole antennas,and the axial ratio(AR)bandwidth of the antenna also can be further enhanced.In addition,due to the special topology that the vertical arms of all Tshaped cross dipoles are all oriented toward the center of the antenna array,the gain of proposed antenna is improved while the size of the antenna is almost the same as the traditional cross dipole.Simulated and measured results show that the proposed antenna has good CP characteristics,an impedance bandwidth for S11<-10 d B of about 106.1%(3.26:1,1.57-5.12 GHz)and the 3-d B AR bandwidth of about 104.1%(3.17:1,1.57-4.98 GHz),a wide 3-d B gain bandwidth of 73.3%as well as the peak gain of 8.6 d Bic at 3.5 GHz.The overall size of antenna is 0.56λ×0.56λ×0.12λ(λrefers to the wavelength of the lowest operating frequency in free space).The good performance of this compact UWB CP antenna array is promising for applications in vehicular communications.
文摘A4-port multiple-input multiple-output(MIMO)antenna exhibiting lowmutual coupling andUWBperformance is developed.The octagonal-shaped four-antenna elements are connected with a 50microstrip feed line that is arranged rotationally to achieve the orthogonal polarization for improving the MIMO system performance.The antenna has a wideband impedance bandwidth of 7.5GHz with S11<−10 dB from(103.44%)3.5–11GHz and inter-element isolation higher than 20 dB.Antenna validation is carried out by verifying the simulated and measured results after fabricating the antenna.The results in the form of omnidirectional radiation patterns,peak gain(≥4 dBi),and Envelope Correlation Coefficient(ECC)(≤0.01)are extracted to validate the suggested antenna performance.Aswell,time-domain analysis was investigated to demonstrate the operation of the suggested antenna in wideband applications.Finally,the simulated and experimental outcomes have almost similar tendenciesmaking the antenna suitable for its use in UWBMIMOapplications.
基金the Fundamental Research Grant Scheme (FRGS/1/2018/ICT06/UNIMAP/02/1)of the Ministry of Higher Education of Malaysia.
文摘Metamaterials(MTM)can enhance the properties of microwaves and also exceed some limitations of devices used in technical practice.Note that the antenna is the element for realizing a microwave imaging(MWI)system since it is where signal transmission and absorption occur.Ultra-Wideband(UWB)antenna superstrates with MTM elements to ensure the signal transmitted from the antenna reaches the tumor and is absorbed by the same antenna.The lack of conventional head imaging techniques,for instance,Magnetic Resonance Imaging(MRI)and Computerized Tomography(CT)-scan,has been demonstrated in the paper focusing on the point of failure of these techniques for prompt diagnosis and portable systems.Furthermore,the importance ofMWIhas been addressed elaborately to portray its effectiveness and aptness for a primary tumor diagnosis.Other than that,MTM element designs have been discussed thoroughly based on their performances towards the contributions to the better image resolution of MWI with detailed reasonings.This paper proposes the novel design of a Zeroindex Split RingResonator(SRR)MTMelement superstrate with a UWB antenna implemented in MWI systems for detecting tumor.The novel design of the MTM enables the realization of a high gain of a superstrate UWB antenna with the highest gain of 5.70 dB.Besides that,the MTM imitates the conduct of the zeroreflection phase on the resonance frequency,which does not exist.An antenna with an MTM unit is of a 7×4 and 10×5 Zero-index SRR MTM element that acts as a superstrate plane to the antenna.Apart from that,Rogers(RT5880)substrate material is employed to fabricate the designed MTM unit cell,with the following characteristics:0.51mm thickness,the loss tangent of 0.02,as well as the relative permittivity of 2.2,with Computer Simulation Technology(CST)performing the simulation and design.Both MTM unit cells of 7×4 and 10×5 attained 0°with respect to the reflection phase at the 2.70 GHz frequency band.The first design,MTM Antenna Design 1,consists of a 7×4 MTM unit cell that observed a rise of 5.70 dB with a return loss(S11)−20.007 dB at 2.70 GHz frequency.The second design,MTM Antenna Design 2,consists of 10×5 MTM unit cells that recorded a gain of 5.66 dB,having the return loss(S11)−19.734 dB at 2.70 GHz frequency.Comparing these two MTM elements superstrates with the antenna,one can notice that the 7×4 MTM element shape has a low number of the unit cell with high gain and is a better choice than the 10×5 MTM element in realizing MTM element superstrates antenna for MWI.
文摘The antenna plays an essential role in the medical industry.The short-range 5th Generation(5G)communication can be used for seamless transmission,reception,patient monitoring,sensing and measuring various processes at high speeds.A passive Ultra Wide Band(UWB)antenna,used as a sensor in the mea-surement of Prothrombin Time(PT)i.e.,blood clot is being proposed.The inves-tigated micro-strip patch UWB antenna operating in the frequency range of 3.1 to 10.6 GHz consists of a circular patch with a diamond-shaped slot made of jeans substrate material with good sensing properties is accomplished by adjusting the copper thickness of the patch.Due to the turbidity in blood plasma,PT measure-ment is the repetitive approach to get accurate value.In order to solve this issue,an antenna is designed,fabricated and analysed to obtain the accurate PT mea-surements from blood plasma.The blood clotting is observed by electromagnetic emitted voltage converted into the frequency range of 5 to 10 GHz and voltage range of 0.66 to 0.87 mV.The circular UWB antenna is constructed employing jean’s substrate with a partial ground plane to improve the S-parameter,gain,bandwidth and performance characteristics.The proposed antenna with Specific Absorption Rate(SAR)value within the acceptable range can be used as a wear-able device in the human body,leveraging 5G technology.This antenna is well suited for various other applications like wireless sensors,wearable devices and short-range communication applications.
文摘A simple and compact microstrip-fed ultra wideband (UWB) printed monopole antenna with band-notched performance is proposed for wireless universal serial-bus (WUSB). The antenna is composed of a U-shaped line radiator and a small strip bar and is partially grounded, so that the measured impedance bandwidth of the antenna is about 7. 88 GHz covering 3. 12 to 11 GHz with VSWR below 2, and the expected band rejection of 5.06 to 5. 89 GHz is also obtained. The characteristics of the proposed antenna are analyzed, and the geometric parameters for optimal performance are investigated in detail. A relatively stable, quasi-omnidirectional and quasi-symmetrical radiation pattern is also found. The proposed band-notched UWB antenna requires no external filters to avoid interference with other systems, and thus, greatly simplifies the system design of an ultra wideband WUSB communication system.
基金The National High Technology Research and Development Program of China(863 Program)(No.2007AA01Z264)
文摘In order to broaden the bandwidth of a tapered slot- line antenna (TSA), a bilateral tapered slot-line antenna (BTSA) with a new feeding structure of coplanar waveguide (CPW) is developed. Based on the fact that the bandwidth limitation of TSA mainly depends on its feeding structure, an improved CPW-based feed structure etched on the backboard of the BTSA is adopted to perform traveling-wave transition. Both the simulation results and measurement data verify that the proposed feeding structure results in "high-pass" frequency response for antenna impedance matching. The voltage standing wave ratio (VSWR) is less than 2:1 when the frequency is higher than 3 GHz. The antenna gain exceeds 7 dBi with good radiation patterns when the bandwidth is from 4 to 16 GHz. This ultra wideband (UWB) antenna with a compact size is specially available for the electronic systems of counter-measure and microwave imaging.
基金the Research Program through the National Research Foundation of Korea,NRF-2019R1A2C1005920,S.K.
文摘In this paper,a low cost,highly efficient and low profile monopole antenna for ultra-wideband(UWB)applications is presented.A new inverted triangular-shape structure possessing meander lines is designed to achieve a wideband response and high efficiency.To design the proposed structure,three steps are utilized to achieve an UWB response.The bandwidth of the proposed antenna is improved with changing meander lines parameters,miniaturization of the ground width and optimization of the feeding line.The measured and simulated frequency band ranges from 3.2 to 12 GHz,while the radiation patterns are measured at 4,5.3,6 and 8 GHz frequency bands.The overall volume of the proposed antenna is 26×25×1.6 mm^(3);whereas the FR4 material is used as a substrate with a relative permittivity and loss tangent of 4.3 and 0.025,correspondingly.The peak gain of 4 dB is achieved with a radiation efficiency of 80 to 98%for the entire wideband.Design modelling of proposed antenna is performed in ANSYS HFSS 13 software.A decent consistency between the simulated and measured results is accomplished which shows that the proposed antenna is a potential candidate for the UWB applications.
基金Project supported by the National Natural Science Foundation of China (Grant No.60571053), and the Shanghai Leading Academic Discipline Project (Grant No.T0102).
文摘This paper introduces the advances of ultra-wideband (UWB) and super-wideband (SWB) planar antennas based on the printed monopole, microstrip slot and other planar antenna designs in the last decade. A brief history of the ultrawideband antennas is first provided. Several types of planar antennas for UWB systems with band-notched designs are reviewed. Special SWB planar antenna designs with the bandwidth ratio greater than 10:1 including metal-plate and printed monopole antennas and tapered slot antennas are presented and compared.
文摘A new type of ultra-wideband (UWB) printed monopole antennas is presented, which is composed of a circular or armular patch and a trapeziform ground plane with a tapered CPW feeder in the middle. Both simulated and experimental results are presented, showing good agreement and therefore verifying validity of the design. The proposed antenna with a circular monopole patch achieves an 11.6: 1 measured ratio bandwidth of VSWR ≤2 ( from 0,79 GHz to 9.16 GHz), while that with an annular patch obtains a measured ratio impedance bandwidth of 10.6:1 (from 0.87 GHz to 9.47 GHz). In addition, these designs exhibit nearly omnidirectional radiation patterns with simple compact structures, which axe attractive in communications and others UWB applications.
基金We would like to thanks to Ministry of Higher Education and UTeM through FRGS Grant F00430 FRGS/1/2020/FKEKK-CETRI/F00430 that support this research.
文摘In this paper,a high gain and directional coplanarwaveguide(CPW)-fed ultra-wideband(UWB)planar antenna with a new frequency selective surface(FSS)unit cells design is proposed for UWB applications.The proposed UWB antenna was designed based on the Mercedes artistic-shaped planar(MAP)antenna.The antenna consisted of a circular ring embedded with three straight legs for antenna impedance bandwidth improvement.The modelled FSS used the integration of a two parallel conductive metallic patch with a circular loop structure.The FSS provided a UWB stopband filter response covering a bandwidth of 10.5 GHz,for frequencies from 2.2 to 12.7 GHz.The proposed FSS had a compact physical dimension of 5 mm×5 mm×1.6 mm,with a printed array of 19×19 FSS unit cells.The FSS unit cells were printed on only one side of the dielectric FR4 substrate and placed as a sandwich between the antenna and the reflector ground plane.An equivalent circuit configuration(ECC)was used to verify the FSS unit cell structure’s performance.The simulated results indicated that the UWB MAP antenna and FSS reflector provided a fractional bandwidth of 136%and a high gain of 11.5 dB at 8.5 GHz with an acceptable radiation efficiency of 89%.Furthermore,the gain was improved across the operating band and kept between 8.3 and 11.5 dB.The proposed antenna was in good agreement between theoretical and experimental results and offered a wide enough bandwidth for UWB and vehicle applications.
文摘This paper proposed integrating the communication system on the garment,which can be utilized to detect breast cancer at an early stage by using an ultra-wideband(UWB)wearable antenna.Breast cancer is an abnormal cell that is located in the breast tissue.Early detection of breast cancer plays an important role,and it helps in the long term for all women.The proposed UWB wearable antenna successfully operates at 3.1-10.6 GHz under an acceptable reflection coefficient of−10 dB.The fabricated wearable antenna was made from Shieldit Super and felt both conductive and nonconductive wearable materials.Few measurement studies of bending angles have been carried out that covered 2°,4°,6°,8°,and 10°.In addition,the performance of UWB antennas in wet environments is studied in four stages:in water,instantly wet,nearly dry,and entirely dry.There is good agreement between the measured and simulated outcomes.Based on the experimental results,the proposed antenna could be helpful for a home breast cancer detection system.
基金Taif University Researchers are supporting project number(TURSP-2020/216),Taif University,Taif,Saudi Arabia.
文摘This paper presents the design and analysis of a miniaturized and novel wearable ultra-wideband(UWB)band-notch textile antenna for Body Area Networks(BANs).The major goal of building the antenna for wearable applications with band notch in X-band is to reject the downlink band(7.25 to 7.75 GHz)of satellite communication in the UWB frequency ranges of 3.1–10.6 GHz to keep away from interference.Computer Simulation Technology(CST)TM Microwave Studio,which is user-friendly and reliable,was used to model and simulate the antenna.The radiating element of the antenna is designed on Jeans’textile substrate,which has a relative permittivity of 1.7.The thickness of the jeans’fabric substrate has been considered to be 1 mm.Return loss,gain,bandwidth,impedance,radiation,and total efficiency,and radiation patterns are presented and investigated.The antenna is simulated placed on the three layers of the human body model,and the on-body results are summarized in comparison with free space.Results and analysis indicate that this antenna has good band-notch characteristics in the frequency range of 7.25 GHz to 7.75 GHz.The parametric study varying the relative permittivity of Jeans’fabric substrate of this antenna is also evaluated.In addition,effects on the antenna parameters of variation of ground plane size have been reported.The antenna is 25 mm×16 mm×1.07 mm in total volume.Results reveal that this antenna achieves the design goal and performs well both in free space and on the body.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(MSIT)(No.2019R1A4A1023746,No.2019R1F1A1060799)the Strengthening R&D Capability Program of Sejong University.
文摘This paper introduces a compact dual notched UWB antenna with an independently controllable WLAN notched band integrated with fixed WiMAX band-notch.The proposed antenna utilizes a slot resonator placed in the main radiator of the antenna for fixed WiMAX band notch,while an inverted L-shaped resonator in the partial ground plane for achieving frequency agility within WLAN notched band.The inverted L-shaped resonator is also loaded with fixed and variable capacitors to control and adjust the WLAN notch.The WLAN notched band can be controlled independently with a wide range of tunability without disturbing the WiMAX bandnotch performance.Step by step design approach of the proposed antenna is discussed and the corresponding mathematical analysis of the proposed resonators are provided in both cases.Simulation of the proposed antenna is performed utilizing commercially available 3D-EM simulator,Ansoft High Frequency Structure Simulator(HFSS).The proposed antenna has high selectivity with experimental validation in terms of reflection coefficient,radiation characteristics,antenna gain,and percentage radiation efficiency.The corresponding measured frequency response of the input port corresponds quite well with the calculations and simulations in both cases.The proposed antenna is advantageous and can adjust according to the device requirements and be one of the attractive candidates for overlay cognitive radio UWB applications and URLLC service in 5G tactile internet.The proposed multifunctional antenna can also be used for wireless vital signs monitoring,sensing applications,and microwave imaging techniques.
文摘In this letter, a simple monopole antenna with variable band-notched characteristic for ultra wide band (UWB) function is proposed. Two L-shaped quarter-waveguide resonators coupled to the ground plane with two shorting tracks at the sides of the antenna are used to generate stop-band performance around 5.5 GHz (WLAN). The proposed antenna is fabricated on the substrate FR4 (relative permittivity of 4.7) and has a compact size of 16 × 28.5 × 1.6 mm. The designed antenna has a good impedance matching in 3.1 - 11.4 GHz frequency range with VSWR < 2, except the band 5 - 5.85 GHz.
文摘The C-band is allocated for commercial telecommunications via satellites. Amateur satellite operations in the frequency range 5.830 to 5.850 GHz for down-links and 5.650 to 5.670 GHz for up-links are allowed by International Telecommunication Union. The X-band is used for terrestrial broadband communication, radar applications, and portions of the X-band are assigned for deep space telecommunications. In this paper, a design of 4 × 1 Ultra Wide Band (UWB) antenna array for C-band and X-band applications is introduced. Metamaterial sixteen-unit cells are incorporated into each antenna element for radiation characteristics enhancement purposes. Permeability and permittivity of metamaterial unit cells are obtained all over the operating bandwidth. UWB unequal power divider is used to feed the proposed four elements antenna array based on Chebyshev excitation method. The proposed antenna has a suitable 3 dB beam width and gains all over the operating bandwidth which extends from 5.6 GHz to 10.9 GHz. The proposed antenna covers 60% and 72.5% of the C-band and X-band, respectively. The proposed antenna is fabricated, measured, and good agreement is obtained between simulated and measured results. The obtained performance ensures the suitability of the proposed antenna array for C-band and X-band applications.
基金supported by National Natural Science Foundation of China(grant No.61471002)The Natural Science Foundation of Higher Education of Anhui Province,China(grant No.KJ2016JD11)
文摘In order to improve the performance of the antenna at low frequency,short circuit branch and coupling feed structure are introduced into the folded broadband single antenna in this paper,then resonant frequency is merged into the antenna using method of stagger tuning,finally,a UWB antenna is designed to w ork betw een 800 MHz ~ 2700 MHz. Analysis are conducted to determine the antenna's properties. The short-circuit w ire location,feeding point location and the length of folded strip are discussed in detail. The SAR is calculated by HFSS simulation softw are w hile the antenna is close to a 3D human head model. The research results show that the antenna can cover eight commonly used commercial frequency bands at present,and electromagnetic radiation of the antenna has tiny influence on the human head model.
文摘A simple and compact ultra wideband (UWB) printed monopole antenna with band-notched performance is proposed in this paper. The antenna is partially grounded so that the Q value is depressed and the impedance bandwidth is broadened. A small strip bar is loaded on each arm of the similar U-shaped radiator. The impedance bandwidth of the antenna overlap with IEEE 802.11a is rejected consequently. The geometry parameters of the antenna are investigated and optimized with HFSS. The measured bandwidth of the proposed antenna occupies about 7.89 GHz covering from 3.05 GHz to 10.94 GHz with expected notched band from 4.96 GHz to 5.98 GHz. A quasi-omnidirectional and quasi-symmetrical radiation pattern in the whole band is also obtained. As a result, a UWB wireless communication system can be simplified with the band-notched UWB antenna presented.
文摘Ultra wide bands antennas with notched bands characteristics have recently been considered for efficient communication between devices. In this paper, a compact ultra-wideband antenna (UWB) for UWB applications with triple bandnotched characteristics is presented. The proposed antenna consists of a square patch with four truncated corners and a partial ground plane with a rectangular slit. The operation bandwidth of the designed antenna is from 2.66 GHz to more than 13.5 GHz. Band-notched characteristics of antenna to reject the frequency band of 3.18 - 3.59 GHz and 4.70 - 5.88 GHz, is realized by inserting two C-shaped slots in the patch, the third band of 9.54 - 12.22 GHz is achieved by slottype capacitively-loaded loop (CLL) inserted in the patch near the feed line. Details of the proposed antenna design and simulated results are presented and discussed.
文摘A compact Ultra-WideBand(UWB) slot antenna is presented in this paper. The slot is modified rectangular in shape and asymmetrically cut in the ground plane. A hexagonal patch with two stepped CoPlanar Waveguide(CPW) feed is used to excite the slot. Wider impedance bandwidth is achieved due to the extra inductive reactance created by the asymmetric slot which neutralizes the capacitive reactance of the hexagonal patch. The measured impedance bandwidth of the proposed antenna is 11.85 GHz(2.9–14.75 GHz). The radiation patterns of the proposed antenna are obtained and found to be omni-directional in H-plane and bi-directional in E-plane.