The use of laser-induced breakdown spectroscopy(LIBS) for the analysis of heavy metals in water samples is investigated. Some factors such as splashing, surface ripples, extinction of emitted intensity, and a shorter ...The use of laser-induced breakdown spectroscopy(LIBS) for the analysis of heavy metals in water samples is investigated. Some factors such as splashing, surface ripples, extinction of emitted intensity, and a shorter plasma lifetime will influence the results if the water sample is directly measured. In order to avoid these disadvantages and the ‘coffee-ring effect', hydrophilic graphite flakes with annular grooves were used for the first time to enrich and concentrate heavy metals in water samples before being analyzed by LIBS. The proposed method and procedure have been evaluated to concentrate and analyze cadmium, chromium, copper, nickel, lead,and zinc in a water sample. The correlation coefficients were all above 0.99. The detection limits of 0.029, 0.087, 0.012, 0.083, 0.125, and 0.049 mgl^(-1) for Cd, Cr, Cu, Ni, Pb, and Zn,respectively, were obtained in samples prepared in a laboratory. With this structure, the heavy metals homogeneously distribute in the annular groove and the relative standard deviations are all below 6%. This method is very convenient and suitable for online in situ analysis of heavy metals.展开更多
The mineralogy and petrography of natural graphite in Saba Boru of Ethiopia indicate that there exists flake graphite with a slightly oval structured fine size according to our study on thin and polished sections.Here...The mineralogy and petrography of natural graphite in Saba Boru of Ethiopia indicate that there exists flake graphite with a slightly oval structured fine size according to our study on thin and polished sections.Herein,for estimating the carbon content in graphite,the ASTM-C561,the test method for ash in a graphite sample,was used.For characterizing graphite,x-ray diffraction,x-ray fluorescence,inductively coupled plasma mass spectroscopy,and scanning electron microscopy were also used.Chemical analysis of ore samples determined that the average compositions are 63.35%SiO2,15.45%Al2O3,2.36%Fe2O3,2.07%K2O,less than1%others,and loss-on-ignition(LOI)in the range of^4.74%–37.42%.The total carbon content of graphitic ore ranged from 4.11%to 33.14%.Importantly,when graphite is concentrated through floatation,its average purity and recovery are 92.97%and 90.82%,respectively.Furthermore,once the graphite concentrates are treated with hydrofluoric acid,the average value attains a high grade of 96.48%C.Moreover,the average ash content is 81.93%(pre-flotation)and 3.1%(post-flotation),respectively.Finally,after beneficiation,a silica is identified as a major gangue(85.88%),usable as a raw material for other purposes such as cement.Hence,these graphite-bearing rocks seem to be worth exploring for commercialization opportunities.展开更多
The effect of graphite surface modification on the thermal conductivity(TC) and bending strength of graphite flakes/Al composites(Gf/Al) prepared by gas pressure infiltration were investigated. Al3 Ni and Al4C3 phase ...The effect of graphite surface modification on the thermal conductivity(TC) and bending strength of graphite flakes/Al composites(Gf/Al) prepared by gas pressure infiltration were investigated. Al3 Ni and Al4C3 phase may form at the interface in Ni-coated Gf/Al and uncoated Gf/Al composites, respectively, while the Al-Cu compound cannot be observed in Cu-coated Gf/Al composites. The Cu and Ni coatings enhance TC and the bending strength of the composites in the meantime. TC of Cu-coated Gf/Al composites reach 515 Wm^-1·K^-1 with 75 vol% Gf, which are higher than that of Ni-coated Gf/Al. Meanwhile, due to Al3 Ni at the interface, the bending strength of Ni-coated Gf/Al composites are far more than those of the uncoated and Cu-coated Gf/Al with the same content of Gf. The results indicate that metal-coated Gf can effectively improve the interfacial bonding between Gf and Al.展开更多
Aluminum storage systems with graphite cathode have been greatly promoting the development of state-of-the-art rechargeable aluminum batteries over the last five years;this is due to the ultra-stable cycling,high capa...Aluminum storage systems with graphite cathode have been greatly promoting the development of state-of-the-art rechargeable aluminum batteries over the last five years;this is due to the ultra-stable cycling,high capacity,and good safety of the systems.This study discussed the change of electrochemical behaviors caused by the structural difference between flake graphite and expandable graphite,the effects of temperature on the electrochemical performance of graphite in low-cost AlCl_(3)-NaCl inorganic molten salt,and the reaction mechanisms of aluminum complex ions in both graphite materials by scanning electron microscopy,X-ray diffraction,Raman spectroscopy,cyclic voltammetry,and galvanostatic charge-discharge measurements.It was found that flake graphite stacked with noticeably small and thin graphene nanosheets exhibited high capacity and fairly good rate capability.The battery could achieve a high capacity of^219 mA·h·g^(-1) over 1200 cycles at a high current density of 5 A·g^(-1),with Coulombic efficiency of 94.1%.Moreover,the reaction mechanisms are clarified:For the flake graphite with small and thin graphene nanosheets and high mesopore structures,the reaction mechanism consisted of not only the intercalation of AlCl4^-anions between graphene layers but also the adsorption of Al Cl4^-anions within mesopores;however,for the well-stacked and highly parallel layered large-size expandable graphite,the reaction mechanism mainly involved the intercalation of AlCl4^-anions.展开更多
Low carbon Al2O3 - C refractories specimens were prepared with tabular alumina (3. 0 - 1.0, 1.0 - 0. 5, 0.6-0.2, ≤0.3, ≤0. 045 and ≤0. 02 mm), active alumina micropowder (≤2 μm ) and silicon ( 〈≤0. 045 mm ...Low carbon Al2O3 - C refractories specimens were prepared with tabular alumina (3. 0 - 1.0, 1.0 - 0. 5, 0.6-0.2, ≤0.3, ≤0. 045 and ≤0. 02 mm), active alumina micropowder (≤2 μm ) and silicon ( 〈≤0. 045 mm ) as main raw materials. Nano carbon black (N220) and natural graphite flake ( 〈≤0. 074 mm ) were adopted as the carbon sources. The specimens were treated at 800, 1 000, 1 200 and 1 400 ℃ under coke embedded atmosphere. The effects of additions of nano carbon black and graphite flake on mechanical properties and thermal shock resistance of the specimens were stud- ied. Their mechanical properties were measured by three- point bending test and thermal shock resistance was de- termined by water quenching method. The phase compo- sition of the specimens was analyzed with X-ray diffrac- tion and microstruetures were observed through FESEM. The results reveal that: (1) the strengths of A1203 - C refractories with these two carbon sources show no big differences when coked at lower than 1 000 ℃ ; when coked at over 1 200 ℃ , the strengths of the specimens with graphite added are much higher than those of the specimens containing carbon black due to much more sil- icon carbide whiskers formed; (2) since the nano carbon black has small particle size, they can be filled into in- terstice of Al2O3 particles to form the nano carbon net- work structure, absorbing and relieving the thermal stressgenerated from expansion and contraction and reducing the thermal expansion coefficient of the specimens, thus their thermal shock resistance is better than that of the specimens containing graphite ; ( 3 ) low carbon Al2 O3 - C refractories with good mechanical properties and excellent thermal shock resistance can be prepared with combi- nation of nano carbon black and graphite flake.展开更多
Nickel-coated graphite flakes/copper(GN/Cu) composites were fabricated by spark plasma sintering with the surface of graphite flakes(GFs) being modified by Ni–P electroless plating. The effects of the phase trans...Nickel-coated graphite flakes/copper(GN/Cu) composites were fabricated by spark plasma sintering with the surface of graphite flakes(GFs) being modified by Ni–P electroless plating. The effects of the phase transition of the amorphous Ni–P plating and of Ni diffusion into the Cu matrix on the densification behavior, interfacial microstructure, and thermal conductivity(TC) of the GN/Cu composites were systematically investigated. The introduction of Ni–P electroless plating efficiently reduced the densification temperature of uncoated GF/Cu composites from 850 to 650℃ and slightly increased the TC of the X–Y basal plane of the GF/Cu composites with 20 vol%–30 vol% graphite flakes. However, when the graphite flake content was greater than 30 vol%, the TC of the GF/Cu composites decreased with the introduction of Ni–P plating as a result of the combined effect of the improved heat-transfer interface with the transition layer, P generated at the interface, and the diffusion of Ni into the matrix. Given the effect of the Ni content on the TC of the Cu matrix and on the interface thermal resistance, a modified effective medium approximation model was used to predict the TC of the prepared GF/Cu composites.展开更多
Three kinds of composite alumina refractories were prepared with tabular alumina (3-1 and 1-0 mm) as aggregates,tabular alumina powder,α-Al2 O3 micropowder,and Si powder as matrix,adding 3 mass% hexagonal boron ni...Three kinds of composite alumina refractories were prepared with tabular alumina (3-1 and 1-0 mm) as aggregates,tabular alumina powder,α-Al2 O3 micropowder,and Si powder as matrix,adding 3 mass% hexagonal boron nitride (h-BN),3 mass% flake graphite and 10 mass% flake graphite,respectively.Cold physical properties,hot modulus of rupture,oxidation resistance,thermal shock resistance and slag corrosion resistance of the specimens were compared.The results show that:(1) physical properties and hot modulus of rupture of Al2 O3-h-BN refractories are slightly different from those of low carbon Al2 O3-C refractories,but better than those of traditional Al2 O3-C refractories with 10 mass% graphite ; (2) Al2 O3-h-BN refractories have better thermal shock resistance and oxidation resistance than the carbon containing refractories,while similar slag resistance with low carbon Al2 O3-C refractories ; (3) h-BN can replace flake graphite as a starting material for the preparation of composite alumina refractories,considering the overall properties of the material.展开更多
A new theoretical model of gray cast iron taking into account a locally interconnected structure of flake graphite was designed,and the corresponding effective thermal conductivity was calculated using the thermal res...A new theoretical model of gray cast iron taking into account a locally interconnected structure of flake graphite was designed,and the corresponding effective thermal conductivity was calculated using the thermal resistance network method.The calculated results are obviously higher than that of the effective medium approximation assuming that graphite is distributed in isolation.It is suggested that the interconnected structure significantly enhances the overall thermal conductivity.Moreover,it is shown that high anisotropy of graphite thermal conductivity,high volume fraction of graphite,and small aspect ratio of flake graphite will cause the connectivity effects of graphite to more obviously improve the overall thermal conductivity.Higher graphite volume fraction,lower aspect ratio and higher matrix thermal conductivity are beneficial to obtain a high thermal conductivity gray cast iron.This work can provide guidance and reference for the development of high thermal conductivity gray cast iron and the design of high thermal conductivity composites with similar locally interconnected structures.展开更多
This paper reports that bunchy flake-like nano-graphite crystallite films (BNGCFs) were deposited on Si substrates by using the microwave chemical vapour deposition technique. Furthermore the BNGCFs were characteriz...This paper reports that bunchy flake-like nano-graphite crystallite films (BNGCFs) were deposited on Si substrates by using the microwave chemical vapour deposition technique. Furthermore the BNGCFs were characterized by x-ray diffraction spectra, scanning electron microscopy, Raman spectra and field emission (FE) I-V measurements, and a lowest turn-on field of 1.5 V/μm, and a high average emission current density of 30 mA/cm2 at a macroscopic electric field of 8.0V/μm were obtained. The J-E data did not follow the original Fowler-Nordheim (F-N) relation since they were not well represented in the F-N plot by a straight line. A model considering the F-N mechanism, and the statistic effects of FE tip structures has been applied successfully to explain all the FE data observed for E 〈 8.SV/μm.展开更多
Graphite flake/Cu composite has attracted tremendous attention as a promising heat sinks materials owing to its easy machinability and superior thermal properties. However, its preparation process still faces several ...Graphite flake/Cu composite has attracted tremendous attention as a promising heat sinks materials owing to its easy machinability and superior thermal properties. However, its preparation process still faces several technological limitations including complex, time-consuming and costly synthetic approaches. In this work, a facile and scalable intermittently electroplated method is applied to prepare Cu-coated graphite flake composite powders, which are subsequently sintered into dense composite bulks. The results show that the graphite flake is successfully coated with a uniform and compact Cu shell,which effectively inhibits the segregation accumulation of graphite flakes and contributes to homogeneous distribution of graphite in the sintered graphite flake/Cu composites. The as-sintered composites exhibit an excellent thermal conductivity of 710 W·m-1·K-1and an outstanding bending strength of 93 MPa. Such performance, together with the simple, efficient powder-preparation process, suggests that the present strategy may open up opportunities for the development of thermal management materials.展开更多
基金supported by National Natural Science Foundation of China (No. 21735005)the Science and Technology Program of Anhui Province (No. 1501041119)+1 种基金the Science and Technology Major Special Program of Anhui Province (No. 15CZZ04125)National Key Research and Development Plan of China (No. 2016YFD0800902-2)
文摘The use of laser-induced breakdown spectroscopy(LIBS) for the analysis of heavy metals in water samples is investigated. Some factors such as splashing, surface ripples, extinction of emitted intensity, and a shorter plasma lifetime will influence the results if the water sample is directly measured. In order to avoid these disadvantages and the ‘coffee-ring effect', hydrophilic graphite flakes with annular grooves were used for the first time to enrich and concentrate heavy metals in water samples before being analyzed by LIBS. The proposed method and procedure have been evaluated to concentrate and analyze cadmium, chromium, copper, nickel, lead,and zinc in a water sample. The correlation coefficients were all above 0.99. The detection limits of 0.029, 0.087, 0.012, 0.083, 0.125, and 0.049 mgl^(-1) for Cd, Cr, Cu, Ni, Pb, and Zn,respectively, were obtained in samples prepared in a laboratory. With this structure, the heavy metals homogeneously distribute in the annular groove and the relative standard deviations are all below 6%. This method is very convenient and suitable for online in situ analysis of heavy metals.
基金This work was supported by Jimma Institute of Technology through Mega Project.
文摘The mineralogy and petrography of natural graphite in Saba Boru of Ethiopia indicate that there exists flake graphite with a slightly oval structured fine size according to our study on thin and polished sections.Herein,for estimating the carbon content in graphite,the ASTM-C561,the test method for ash in a graphite sample,was used.For characterizing graphite,x-ray diffraction,x-ray fluorescence,inductively coupled plasma mass spectroscopy,and scanning electron microscopy were also used.Chemical analysis of ore samples determined that the average compositions are 63.35%SiO2,15.45%Al2O3,2.36%Fe2O3,2.07%K2O,less than1%others,and loss-on-ignition(LOI)in the range of^4.74%–37.42%.The total carbon content of graphitic ore ranged from 4.11%to 33.14%.Importantly,when graphite is concentrated through floatation,its average purity and recovery are 92.97%and 90.82%,respectively.Furthermore,once the graphite concentrates are treated with hydrofluoric acid,the average value attains a high grade of 96.48%C.Moreover,the average ash content is 81.93%(pre-flotation)and 3.1%(post-flotation),respectively.Finally,after beneficiation,a silica is identified as a major gangue(85.88%),usable as a raw material for other purposes such as cement.Hence,these graphite-bearing rocks seem to be worth exploring for commercialization opportunities.
基金Funded by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),China(No.126-QP-2015).
文摘The effect of graphite surface modification on the thermal conductivity(TC) and bending strength of graphite flakes/Al composites(Gf/Al) prepared by gas pressure infiltration were investigated. Al3 Ni and Al4C3 phase may form at the interface in Ni-coated Gf/Al and uncoated Gf/Al composites, respectively, while the Al-Cu compound cannot be observed in Cu-coated Gf/Al composites. The Cu and Ni coatings enhance TC and the bending strength of the composites in the meantime. TC of Cu-coated Gf/Al composites reach 515 Wm^-1·K^-1 with 75 vol% Gf, which are higher than that of Ni-coated Gf/Al. Meanwhile, due to Al3 Ni at the interface, the bending strength of Ni-coated Gf/Al composites are far more than those of the uncoated and Cu-coated Gf/Al with the same content of Gf. The results indicate that metal-coated Gf can effectively improve the interfacial bonding between Gf and Al.
基金the National Natural Science Foundation of China(No.51804022)the Fundamental Research Funds for the Central Universities(No.FRF-TP-18-003C2)。
文摘Aluminum storage systems with graphite cathode have been greatly promoting the development of state-of-the-art rechargeable aluminum batteries over the last five years;this is due to the ultra-stable cycling,high capacity,and good safety of the systems.This study discussed the change of electrochemical behaviors caused by the structural difference between flake graphite and expandable graphite,the effects of temperature on the electrochemical performance of graphite in low-cost AlCl_(3)-NaCl inorganic molten salt,and the reaction mechanisms of aluminum complex ions in both graphite materials by scanning electron microscopy,X-ray diffraction,Raman spectroscopy,cyclic voltammetry,and galvanostatic charge-discharge measurements.It was found that flake graphite stacked with noticeably small and thin graphene nanosheets exhibited high capacity and fairly good rate capability.The battery could achieve a high capacity of^219 mA·h·g^(-1) over 1200 cycles at a high current density of 5 A·g^(-1),with Coulombic efficiency of 94.1%.Moreover,the reaction mechanisms are clarified:For the flake graphite with small and thin graphene nanosheets and high mesopore structures,the reaction mechanism consisted of not only the intercalation of AlCl4^-anions between graphene layers but also the adsorption of Al Cl4^-anions within mesopores;however,for the well-stacked and highly parallel layered large-size expandable graphite,the reaction mechanism mainly involved the intercalation of AlCl4^-anions.
文摘Low carbon Al2O3 - C refractories specimens were prepared with tabular alumina (3. 0 - 1.0, 1.0 - 0. 5, 0.6-0.2, ≤0.3, ≤0. 045 and ≤0. 02 mm), active alumina micropowder (≤2 μm ) and silicon ( 〈≤0. 045 mm ) as main raw materials. Nano carbon black (N220) and natural graphite flake ( 〈≤0. 074 mm ) were adopted as the carbon sources. The specimens were treated at 800, 1 000, 1 200 and 1 400 ℃ under coke embedded atmosphere. The effects of additions of nano carbon black and graphite flake on mechanical properties and thermal shock resistance of the specimens were stud- ied. Their mechanical properties were measured by three- point bending test and thermal shock resistance was de- termined by water quenching method. The phase compo- sition of the specimens was analyzed with X-ray diffrac- tion and microstruetures were observed through FESEM. The results reveal that: (1) the strengths of A1203 - C refractories with these two carbon sources show no big differences when coked at lower than 1 000 ℃ ; when coked at over 1 200 ℃ , the strengths of the specimens with graphite added are much higher than those of the specimens containing carbon black due to much more sil- icon carbide whiskers formed; (2) since the nano carbon black has small particle size, they can be filled into in- terstice of Al2O3 particles to form the nano carbon net- work structure, absorbing and relieving the thermal stressgenerated from expansion and contraction and reducing the thermal expansion coefficient of the specimens, thus their thermal shock resistance is better than that of the specimens containing graphite ; ( 3 ) low carbon Al2 O3 - C refractories with good mechanical properties and excellent thermal shock resistance can be prepared with combi- nation of nano carbon black and graphite flake.
基金financially supported by the National Natural Science Foundation of China (No. 51374028)Fundamental Research Funds for the Central Universities (FRF-GF-17-B37)
文摘Nickel-coated graphite flakes/copper(GN/Cu) composites were fabricated by spark plasma sintering with the surface of graphite flakes(GFs) being modified by Ni–P electroless plating. The effects of the phase transition of the amorphous Ni–P plating and of Ni diffusion into the Cu matrix on the densification behavior, interfacial microstructure, and thermal conductivity(TC) of the GN/Cu composites were systematically investigated. The introduction of Ni–P electroless plating efficiently reduced the densification temperature of uncoated GF/Cu composites from 850 to 650℃ and slightly increased the TC of the X–Y basal plane of the GF/Cu composites with 20 vol%–30 vol% graphite flakes. However, when the graphite flake content was greater than 30 vol%, the TC of the GF/Cu composites decreased with the introduction of Ni–P plating as a result of the combined effect of the improved heat-transfer interface with the transition layer, P generated at the interface, and the diffusion of Ni into the matrix. Given the effect of the Ni content on the TC of the Cu matrix and on the interface thermal resistance, a modified effective medium approximation model was used to predict the TC of the prepared GF/Cu composites.
文摘Three kinds of composite alumina refractories were prepared with tabular alumina (3-1 and 1-0 mm) as aggregates,tabular alumina powder,α-Al2 O3 micropowder,and Si powder as matrix,adding 3 mass% hexagonal boron nitride (h-BN),3 mass% flake graphite and 10 mass% flake graphite,respectively.Cold physical properties,hot modulus of rupture,oxidation resistance,thermal shock resistance and slag corrosion resistance of the specimens were compared.The results show that:(1) physical properties and hot modulus of rupture of Al2 O3-h-BN refractories are slightly different from those of low carbon Al2 O3-C refractories,but better than those of traditional Al2 O3-C refractories with 10 mass% graphite ; (2) Al2 O3-h-BN refractories have better thermal shock resistance and oxidation resistance than the carbon containing refractories,while similar slag resistance with low carbon Al2 O3-C refractories ; (3) h-BN can replace flake graphite as a starting material for the preparation of composite alumina refractories,considering the overall properties of the material.
基金the National Natural Science Foundation of China(Grant No.51371104)。
文摘A new theoretical model of gray cast iron taking into account a locally interconnected structure of flake graphite was designed,and the corresponding effective thermal conductivity was calculated using the thermal resistance network method.The calculated results are obviously higher than that of the effective medium approximation assuming that graphite is distributed in isolation.It is suggested that the interconnected structure significantly enhances the overall thermal conductivity.Moreover,it is shown that high anisotropy of graphite thermal conductivity,high volume fraction of graphite,and small aspect ratio of flake graphite will cause the connectivity effects of graphite to more obviously improve the overall thermal conductivity.Higher graphite volume fraction,lower aspect ratio and higher matrix thermal conductivity are beneficial to obtain a high thermal conductivity gray cast iron.This work can provide guidance and reference for the development of high thermal conductivity gray cast iron and the design of high thermal conductivity composites with similar locally interconnected structures.
基金supported by the Shanghai Education Committee of China(Grant No 07ZZ95)
文摘This paper reports that bunchy flake-like nano-graphite crystallite films (BNGCFs) were deposited on Si substrates by using the microwave chemical vapour deposition technique. Furthermore the BNGCFs were characterized by x-ray diffraction spectra, scanning electron microscopy, Raman spectra and field emission (FE) I-V measurements, and a lowest turn-on field of 1.5 V/μm, and a high average emission current density of 30 mA/cm2 at a macroscopic electric field of 8.0V/μm were obtained. The J-E data did not follow the original Fowler-Nordheim (F-N) relation since they were not well represented in the F-N plot by a straight line. A model considering the F-N mechanism, and the statistic effects of FE tip structures has been applied successfully to explain all the FE data observed for E 〈 8.SV/μm.
基金financially supported by the National Key Research and Development Program of China(No.2016YFC0700905)the National Natural Science Foundation of China(Grant No.51674232,No.51972304 and No.51702331)。
文摘Graphite flake/Cu composite has attracted tremendous attention as a promising heat sinks materials owing to its easy machinability and superior thermal properties. However, its preparation process still faces several technological limitations including complex, time-consuming and costly synthetic approaches. In this work, a facile and scalable intermittently electroplated method is applied to prepare Cu-coated graphite flake composite powders, which are subsequently sintered into dense composite bulks. The results show that the graphite flake is successfully coated with a uniform and compact Cu shell,which effectively inhibits the segregation accumulation of graphite flakes and contributes to homogeneous distribution of graphite in the sintered graphite flake/Cu composites. The as-sintered composites exhibit an excellent thermal conductivity of 710 W·m-1·K-1and an outstanding bending strength of 93 MPa. Such performance, together with the simple, efficient powder-preparation process, suggests that the present strategy may open up opportunities for the development of thermal management materials.