期刊文献+
共找到1,066篇文章
< 1 2 54 >
每页显示 20 50 100
Structure and Properties of Self-reinforced Material Made from Ultra-high Molecular Weight Polyethylene-montmorillonite Nanocomposite 被引量:3
1
作者 WANGQing-zhao LIAOXian-ling LIUZong-lin 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2004年第4期504-510,共7页
High-strength and high-modulus ultra-high molecular weight polyethylene(UHMWPE), named self-reinforced material, was obtained by the elongation of UHMWPE-montmorillonite nanocomposite at melting temperature. According... High-strength and high-modulus ultra-high molecular weight polyethylene(UHMWPE), named self-reinforced material, was obtained by the elongation of UHMWPE-montmorillonite nanocomposite at melting temperature. According to the scanning electron microscope(SEM) analysis, a great deal of fibrillar texture formed in the direction of elongation, and the tensile fractured surface was similar to that of highly oriented fiber. The transmission electron microscope(TEM) and selective area electron diffraction(SAED) analyses reveal that the reinforced phase of the self-reinforced material is an extended chain crystal and its size is about 50_200 nm wide and several microns long, and the montmorillonite layers are broken up to pieces in the size from 100 to 10 nm. The broken layers which have a huge surface area interacting strongly with macromolecules reduces the entanglement density of UHMWPE and induces the chain orientation in flow field. It is supposed that the astriction of montmorillonite layers to polyethylene chains is not only end-tethered but also side-tethered. The differential scan calorimetry(DSC) analysis shows that there are two endothermal peaks for the self-reinforced material, of which the peak at a higher temperature(136.4 ℃) is ascribed to the melting of the reinforced phase. 展开更多
关键词 ultra-high molecular weight polyethylene-montmorillonite nanocomposite ELONGATION Self-reinforced material Properties Structure
下载PDF
Temperature Effect on the Conformation Transition of Ultra-high Molecular Weight Polyethylene/Polypropylene Blends Undergoing Continuous Volume Extensional Flow:A Mesoscopic Simulation
2
作者 王军霞 YAN Shilin 余丁山 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第3期540-545,共6页
Due to the multiformity and complexity of chain conformation under external flow and the challenge of systematically investigating the transient conformation and dynamic evolution process of polymer chains at the mole... Due to the multiformity and complexity of chain conformation under external flow and the challenge of systematically investigating the transient conformation and dynamic evolution process of polymer chains at the molecular level by means of present experimental techniques,a universal description of both chain conformation and dynamics with respect to continuous volume extensional flow(CVEF)is still absent.Taking into account the temperature effect,we performed dissipative particle dynamics(DPD)simulations with the particles corresponding to the repeat units of polymers over a wide temperature range and analyzed the correlation with the conformational properties of ultra-high molecular weight polyethylene/polypropylene(UHMWPE/PP)blend in response to the CVEF.With time evolution,the polymer chains become highly oriented parallel to the flow direction instead of the initial random coiling and self-aggregation.It is found that a high temperature is necessary for more substantial compactness to take place than low temperature.The low-k plateau and low-k peak in structure factor S(k)curves suggest a low degree of conformational diversity and a high degree of chain stretching.It is also concluded that the intra-molecular C-C bond interaction is the main driving force for the dynamics process of the chain conformations undergoing CVEF,where the motion of the alkyl chains is seriously restricted owing to the increase in bond interaction potential,resulting in a reduction of the difference in diffusion rates among alkyl chains. 展开更多
关键词 temperature effect dissipative particle dynamics ultra-high molecular weight polyethylene POLYPROPYLENE volume extensional flow chain conformation BLENDS
下载PDF
Ultra-High Molecular Weight Polyethylene Tape Applied for Distal Humeral Condyle Fracture around Total Elbow Arthroplasty in Patients with Rheumatoid Arthritis: Report of Two Cases 被引量:1
3
作者 Norio Yamamoto Mitsuhiko Takahashi +1 位作者 Naohito Hibino Koichi Sairyo 《Open Journal of Orthopedics》 2015年第9期283-287,共5页
Managing fractures of distal humerus in patients with rheumatoid arthritis (RA) is technically challenging. Total elbow arthroplasty (TEA) is one of the treatment options for these fractures. While elbow motion is lar... Managing fractures of distal humerus in patients with rheumatoid arthritis (RA) is technically challenging. Total elbow arthroplasty (TEA) is one of the treatment options for these fractures. While elbow motion is largely regained by TEA, comminuted condyle fragments are often ignored. Although numerous approaches for repair of condylar fragments around TEA are described, any universal fixation strategy for these fractures has not been established. This report describes, for the first time, application of an ultra-high molecular weight polyethylene (UHMWPE) tape for the treatment of distal humerus fracture in 2 patients with rheumatic elbow arthropathy. The post-operative clinical courses were good. Radiographs showed bony union of the condylar fragments without loosening in two cases. Because of its flat configuration, softness, and flexibility, UHMWPE tape is a promising material for stabilizing fracture of the distal humerus associated with TEA. 展开更多
关键词 Total Elbow ARTHROPLASTY DISTAL HUMERUS ultra-high molecular weight polyethylene RHEUMATOID Arthritis
下载PDF
Manufacturing of Ultra-high Molecular Weight Polyethylene Fiber Reinforced Tape and the Loss of Strength
4
作者 胡祖明 刘兆峰 《Journal of China Textile University(English Edition)》 EI CAS 1999年第4期92-94,共3页
Due to the low density and excellent mechanical proper-ties,high performance fiber reinforced materials have aconsiderable application in the area of high technologyand dally usage.In this paper,the Ultra-high Molecu-... Due to the low density and excellent mechanical proper-ties,high performance fiber reinforced materials have aconsiderable application in the area of high technologyand dally usage.In this paper,the Ultra-high Molecu-lar Weight Polyethylene(UHMWPE)fiber reinforcedPE tape prepared with the method of powder impregnat-ion was studied.The effect of impregnate length and thetensile force of the yarn on the fiber content as well as on the strength and modulus of the tape were discussed.Calculation shows that the strength and the modulus ofthe ULMWPE fiber can keep about 85% after it undergothe process. 展开更多
关键词 Ultra - high molecular weight polyethylene fiber REINFORCED material TAPE IMPREGNATION
下载PDF
Cyclic Pulsating Pressure Enhanced Segregating Structuration of Ultra-High Molecular Weight Polyethylene/Graphene Composites as High-performance Light-Weight EMI Shields
5
作者 Yun-Zhi Huang Xiao-Xiao Liu +3 位作者 Lan-Wei Li Guang-Ming Huang Zhao-Xia Huang Jin-Ping Qu 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第7期958-967,I0008,共11页
Currently,the enhancement in electromagnetic interference(EMI)performance of polymeric composite generally relies on either improving electrical conductivity(σ)for stronger electromagnetic(EM)reflections or tailoring... Currently,the enhancement in electromagnetic interference(EMI)performance of polymeric composite generally relies on either improving electrical conductivity(σ)for stronger electromagnetic(EM)reflections or tailoring structure for higher EM resonances.Herein,we proposed a novel technique called cyclic pulsating pressure enhanced segregating structuration(CPP-SS),which can reinforce these two factors simultaneously.The structural information was supplied by optical microscopy(OM)and scanning electron microscopy(SEM),both of which confirmed the formation and evolution of segregate structured ultra-high molecular weight polyethylene(UHMWPE)/graphene composites.Then,the result showed that CPP-SS can significantly improve theσof samples.Ultimately,advanced specific EMI shielding efficiency of 31.1 d B/mm was achieved for UHMWPE/graphene composite at 1-mm thickness and a low graphene loading of 5 wt%.Meanwhile,it also confirmed that the intrinsic disadvantage of poor mechanical properties of conventional segregated structure composites can be surpassed.This work is believed to provide a fundamental understanding of the structural and performance evolutions of segregated structured composites prepared under CPPSS,and to bring us a simple and efficient approach for fabricating high-performance,strong and light-weight polymeric EMI shields. 展开更多
关键词 Cyclic pulsating pressure Segregated structure ultra-high molecular weight polyethylene GRAPHENE Electromagnetic interface
原文传递
PREPARATION OF MICROPOROUS ULTRA HIGH MOLECULAR WEIGHT POLYETHYLENE (UHMWPE) BY THERMALLY INDUCED PHASE SEPARATION OF A UHMWPE/LIQUID PARAFFIN MIXTURE 被引量:7
6
作者 沈烈 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2008年第6期653-657,共5页
Ultra-high molecular weight polyethylene (UHMWPE) with a microporous structure was prepared via thermally induced phase separation (TIPS).Liquid paraffin (LP) was used as a diluent in the preparation of microporous UH... Ultra-high molecular weight polyethylene (UHMWPE) with a microporous structure was prepared via thermally induced phase separation (TIPS).Liquid paraffin (LP) was used as a diluent in the preparation of microporous UHMWPE. Small angle laser light scattering (SALLS) and differential scanning calorimetry (DSC) were used to determine the phase separation temperatures,i.e.the cloud points and the dynamic crystallization temperatures,respectively.It was found that the cloudI points were coincident with the cryst... 展开更多
关键词 Ultra high molecular weight polyethylene Thermally induced phase separation Liquid paraffin.
下载PDF
SUPPORTED ZIEGLER-NATTA CATALYSTS FOR ETHYLENE SLURRY POLYMERIZATION AND CONTROL OF MOLECULAR WEIGHT DISTRIBUTION OF POLYETHYLENE 被引量:1
7
作者 Vladimir Zakharov Ludmila Echevskaya +4 位作者 Tatiana Mikenas Mikhail Matsko Andrey Tregubov Marina Vanina Marina Nikolaeva 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2008年第5期553-559,共7页
The effect of chemical composition of highly active supported Ziegler-Natta catalysts with controlled morphology on the MWD of PE has been studied.It was shown the variation of transition metal compound in the MgCl_2-... The effect of chemical composition of highly active supported Ziegler-Natta catalysts with controlled morphology on the MWD of PE has been studied.It was shown the variation of transition metal compound in the MgCl_2-supported catalyst affect of MWD of PE produced in broad range:Vanadium-magnesium catalyst(VMC)produce PE with broad and bimodal MWD(M_w/M_n=14-21).MWD of PE,produced over titanium-magnesium catalyst(TMC)is narrow or medium depending on Ti content in the catalyst(M_w/M_n=3.1-4.8).The oxidation ... 展开更多
关键词 polyethylene(PE) Vanadium magnesium catalyst(VMC) Titanium magnesium catalyst(TMC) Gel permeation chromatography(GPC) molecular weight distribution(MWD).
下载PDF
Reattachment of the Osteotomized Greater Trochanter in Hip Surgery Using an Ultrahigh Molecular Weight Polyethylene Fiber Cable: A Multi-Institutional Study 被引量:1
8
作者 Seiya Jingushi Tsutomu Kawano +8 位作者 Hirokazu Iida Kenichi Oe Kenji Ohzono Yoshihide Nakamura Makoto Osaki Hidetsugu Ohara Seung Bak Lee Toshihiko Hara Naohide Tomita 《Open Journal of Orthopedics》 2013年第6期283-289,共7页
The purpose of this multicenter study was to evaluate the clinical performance of an ultrahigh molecular weight polyethylene (UHMWPE) fiber cable for re-attachment of the osteotomized greater trochanter in hip surgery... The purpose of this multicenter study was to evaluate the clinical performance of an ultrahigh molecular weight polyethylene (UHMWPE) fiber cable for re-attachment of the osteotomized greater trochanter in hip surgery. Included in the study were 85 hips that had undergone surgery with greater trochanter osteotomy, including 50 hip arthroplasty procedures and 35 hip osteotomies. The osteotomized greater trochanter was reattached using one or more UHMWPE fiber cables. The bone union and displacement of the greater trochanter were assessed in radiographs for up to 12 months after surgery. Non-union of the osteotomy site occurred in 4.7% of the cases. In approximately 90% of the cases, displacement was less than 2 mm at up to 12 months after surgery. The UHMWPE fiber cable was a good biomaterial for reattaching the osteotomized greater trochanter and may also be an option for osteosynthesis procedures. 展开更多
关键词 Ultrahigh molecular weight polyethylene FIBER CABLE Biomaterials OSTEOSYNTHESIS Greater Trochanter OSTEOTOMY Hip Operations ARTHROPLASTY
下载PDF
Highly Branched Polyethylene with Low Molecular Weight Prepared through Ethylene Polymerization on Nickel-Based Catalyst 被引量:1
9
作者 Yi Jianjun Huang Xugeng Jing Zhenhua (Research Institute of Petroleum Processing, Beijing 100083) 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2005年第1期57-61,共5页
Nickel-based catalyst [N,N]NiBr2, in which [N,N] stands for N-(2,6-diisopropylphenyl)pyridine-2-carboxaldimine, shows high activity for ethylene polymerization in the presence of organoaluminum compounds under high et... Nickel-based catalyst [N,N]NiBr2, in which [N,N] stands for N-(2,6-diisopropylphenyl)pyridine-2-carboxaldimine, shows high activity for ethylene polymerization in the presence of organoaluminum compounds under high ethylene pressure to yield polyethylene characteristic of low molecular weight and highly branched chains. Toluene as the solvent is more in favor of catalyst activity, higher molecular weight and branched chains in polyethylene structure as compared to hexane solvent. 展开更多
关键词 聚乙烯 分子量 聚合作用 催化剂
下载PDF
Mechanism of size effects of a filler on the wear behavior of ultrahigh molecular weight polyethylene
10
作者 Huan Zhang Shicheng Zhao +4 位作者 Zhong Xin Chunlin Ye Zhi Li Jincheng Xia Jiaorong Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第7期1950-1963,共14页
Although the size effects of a filler are closely related to the complex multi-level structures of their polymer composites;unfortunately,such relationships remain poorly understood.In this study,we investigated the e... Although the size effects of a filler are closely related to the complex multi-level structures of their polymer composites;unfortunately,such relationships remain poorly understood.In this study,we investigated the effects of various sizes(40-600 nm)of silicon carbide(SiC)fillers on the wear behavior of ultrahigh molecular weight polyethylene(UHMWPE)in the presence of the silane coupling agent KH-560.All of these SiC fillers improved the wear resistance of UHMWPE significantly,with a medium size(150 nm)being optimal.To examine the reasons for this behavior,we analyzed the multi-level structures of the samples in terms of their matrix structures(crystalline;amorphous;interphase),matrix-filler interactions(physical adsorption;chemical crosslinking;hybrid network)and the external effects of SiC fillers(bearing loads;transferring frictional heat).The high rigidity and thermal conductivity of SiC fillers and,more importantly,the intrinsic characteristics of the matrix structures(larger crystal grains;higher interphase;stronger amorphous entangled networks)were the key parameters affecting the enhancement in the wear-resistance of the UHMWPE.Herein,we also provide interpretations of the corresponding physical effects.Our results should improve our understanding of the structure-property relationships and,thus,should guide the formula design of UHMWPE composites. 展开更多
关键词 Ultrahigh molecular weight polyethylene Wear behavior Structure-property relationships Particle size Silicon carbide Polymer-filler interactions
下载PDF
Friction and wear properties of ultra-high molecular mass polyethylene reinforced with Al2O3 nano-particle
11
作者 FAN Dong-li XIONG Dang-sheng 《中国有色金属学会会刊:英文版》 CSCD 2004年第z1期354-358,共5页
The ultra-high molecular mass polyethylene (UHMMPE) as an artificial joint acetabular material was filled with nano-powder of Al2O3 of various mass fractions. The effect of Al2O3 mass fraction on the hardness, wetting... The ultra-high molecular mass polyethylene (UHMMPE) as an artificial joint acetabular material was filled with nano-powder of Al2O3 of various mass fractions. The effect of Al2O3 mass fraction on the hardness, wetting property and tribological properties of the Al2O3-UHMMPE composites under dry friction sliding against both stainless steel and Ti-6Al-4V alloy was investigated. The morphologies of the worn surfaces of composites were observed with optical microscope. The results show that, wetting property and wear resistance of the composites are improved by filling Al2O3, while the friction coefficient is decreased largely under dry friction as compared with that of the unfilled UHMMPE. This is attributed to the reinforcing function of the nano-powder of Al2O3 in the composites. The wear of UHMMPE is dominated by plowing, plastic deformation and fatigue wear; while the Al2O3-UHMMPE composites are characterized by the mild fatigue wear. 展开更多
关键词 ultra-high molecular mass polyethylene AL2O3 NANO-POWDER FILLING modification friction and WEAR properties artificial joint
下载PDF
Ion Radiation Detection Using Implanted Ultrahigh Molecular Weight Polyethylene Structures (UHMWPE)
12
作者 Maitha El-Muraikhi 《Materials Sciences and Applications》 2019年第1期12-24,共13页
The effect of ion implantation, including Ar+ ion with influences (1 × 1013 - 1015 ions/cm2), on the electrical and optical properties of ultrahigh molecular weight polyethylene (UHMWPE) were investigated with pa... The effect of ion implantation, including Ar+ ion with influences (1 × 1013 - 1015 ions/cm2), on the electrical and optical properties of ultrahigh molecular weight polyethylene (UHMWPE) were investigated with particular emphasis placed on the sensor performance to be used in the field of radiation detection. The obtained results focusing on the effect of the different influences showed a significant change in the electrical conductivity, capacitance and loss tangent. The absorption spectra for UHMWPE samples were recorded and the values of the allowed direct and indirect optical energy gap (Eopt)d, (Eopt)in of UHMWPE and energies of the localized states for the virgin and implanted samples were calculated. We found that the optical energy gap values decreased as the radiation dose increased. The results can be explained on the basis of the ion beam radiation-induced damage in the linear chains of UHMWPE, with cross-linking generated after implantation. The observed changes in both the optical and the electrical properties suggest that the UHMWPE film may be considered as an effective material to achieve ion-radiation detection at room temperature. 展开更多
关键词 Ultrahigh molecular weight polyethylene ION Beam IRRADIATION UV-VIS Spectroscopy ION Detection Optical Band Gap Dielectric Constant
下载PDF
Hot-Drawing of Ultrahigh-Molecular-Weight Polyethylene Gel Films
13
作者 戚嵘嵘 朱清仁 +2 位作者 周持兴 刘萌戈 周贵恩 《Journal of Shanghai University(English Edition)》 CAS 2004年第1期101-108,共8页
The three stages in the hot-drawing process of ultrahigh-molecular-weight polyethylene gel films can be detected by x-ray diffraction, infrared spectroscopy, birefringence and scanning electron microscopy. In the firs... The three stages in the hot-drawing process of ultrahigh-molecular-weight polyethylene gel films can be detected by x-ray diffraction, infrared spectroscopy, birefringence and scanning electron microscopy. In the first stage of the drawing process, the lamellae in the gel films rotate and/or slip with the b-axis preferentially perpendicular to the drawing direction. With increased drawing, the c-axis of the lamellae become parallel to the stretching direction while unfolding of the chain begins, and the chains of the amorphous phase also orient along the drawing direction in the strain-chain domain. When the draw ratio is large enough, the lamellar structure is transformed into a fibrillar structure in a two-dimensional fashion. 展开更多
关键词 ultrahigh-molecular weight polyethylenes (UHMWPE) gel film hot-drawing morphological changes.
下载PDF
Determination and Temperature Dependence of Plateau Modulus for Polymerization of Propylene to Isotactic Polypropylene with Ultra-high Molecular Weight under Catalysis of Ziegler-Natta Catalyst 被引量:1
14
作者 DINGJian DINGXue-jia XURi-wei YUDing-sheng 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2005年第2期227-231,共5页
The viscoelastic behavior of isotactic polypropylene with ultra-high molecular weight(UHPPH) and broad molecular weight distribution(MWD), produced in the presence of Ziegler-Natta catalyst, was investigated by means ... The viscoelastic behavior of isotactic polypropylene with ultra-high molecular weight(UHPPH) and broad molecular weight distribution(MWD), produced in the presence of Ziegler-Natta catalyst, was investigated by means of oscillatory rheometry at 180 and 200 ℃, whose loss modulus(G″) plots at 180 and 200 ℃ versus the natural logarithm of angular frequency(ω) present a pronounced maximum at 34.35 and 69.21 rad/s, respectively, and do not show a maximum peak at 0.01-100 rad/s for Ziegler-Natta catalyzing ethylene-propylene random copolymerization(PPR) with a conventional molecular weight and broad MWD. The fact indicates that the high molecular weight is responsible for a maximum peak of G″(ω) vs. lnω curves for UHPPH. This makes it possible to determine the plateau modulus(G 0_N) of UHPPH from a certain experimental temperature G″(ω) curve directly. For UHPPH, the G 0_N determined to be 4.28×10 5 and 3.62×10 5 Pa at 180 and 200 ℃, respectively, decreases with the increase of temperature and is independent of the molecular weight, which directly confirms reputation theoretical prediction that the G 0_N has no relation to the molecular weight. 展开更多
关键词 Isotactic polypropylene ultra-high molecular weight Broad molecular weight distribution Plateau modulus
下载PDF
Preparation of Ultra-High Molecular Weight Polypropylene Using Ziegler-Natta Catalyst via Combining Internal Electron Donor and Cocatalyst Loading 被引量:1
15
作者 Xia Xiaoqi Li Hongming +6 位作者 Li Chunman Miao Qing Li Jing Zhu Feng Huang Qigu Yi Jianjun Zhao Zhong 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2021年第3期12-22,共11页
Due to the development of the new energy industry,polypropylene with ultra-high molecular weight plays a crucial role for battery isolation membrane.This work investigated the effect of internal electron donor of Zieg... Due to the development of the new energy industry,polypropylene with ultra-high molecular weight plays a crucial role for battery isolation membrane.This work investigated the effect of internal electron donor of Ziegler-Natta catalyst system on the molecular weight of the obtained polypropylene.The scanning electron microscope(SEM)and Canon camera were used to characterize the surface morphologies of catalyst particles and polymer particles,respectively.Compared with the polypropylene particles featuring a spherical shape,these study results confirmed that the morphology duplication theory from the catalyst particle to the morphology of polymer particle was exhibited.The gel permeation chromatography(GPC)results revealed that the obtained polypropylene has a much higher average molecular weight than those prepared by conventional method.The Fourier transform infrared spectrometry(FT-IR)and X-ray photoelectron spectroscopy(XPS)revealed that the carbonyl oxygen atom on ester group was preferentially bound to Mg and Ti,as compared to the ether oxygen atom.The XPS results showed that the ratio of Ti^(3+)/Ti^(4+)could be changed by internal electron donors.When Ti3+content was nearly 99%in the Ziegler-Natta catalyst system,isotactic polypropylene with an ultra-high molecular weight of up to 1.42×10^(6)g/mol was obtained by Cat.3.This result implied that internal electron donor ID3 could reduce theβ-hydride elimination reaction to further increase the molecular weight of the obtained polymer. 展开更多
关键词 internal electron donor Ziegler-Natta catalyst ultra-high molecular weight isotactic polypropylene
下载PDF
PREPARATION AND CHARACTERIZATION OF ULTRA-HIGH MOLECULAR WEIGHT POLY(ETHYLENE TEREPHTHALATE)(PET)FIBER
16
作者 章谭莉 胡学超 +1 位作者 谢又乐 严建华 《Journal of China Textile University(English Edition)》 EI CAS 1997年第4期7-12,共6页
This paper reports the spinning and drawing behavior of Ultra-high Molecular Weight polyethylene Terephthalate) (UHMW-PET) fibers. The as-spun fibers were produced by dry-jet wet spinning of a 15%-17% solution in 50:5... This paper reports the spinning and drawing behavior of Ultra-high Molecular Weight polyethylene Terephthalate) (UHMW-PET) fibers. The as-spun fibers were produced by dry-jet wet spinning of a 15%-17% solution in 50:50(v:v) trifluroroacetic acid and dichloromethane. Both molecular weight and polymer solution concentration have marked effect on the drawability of the as-spun-fibers. The maximum extension drawing ratio (EDRmax) of as-spun fiber increases with increasing molecular weight, whereas optimal concentration to achieve the EDRmax of as-spun fibers decreases with increasing molecular weight. Drawing speed and temperature during the first step have remarkable effect on the drawability of these fiber during the second step. Relatively lower drawing temperature and drawing speed (19 ℃ , 60 mm/min) during the first drawing step was beneficial to mechanical properties of ultimate fibers. At the range of 210 ℃ to 230 ℃, the draw ratio (DR) during the second step increases with increasing temperature. 展开更多
关键词 ultra-high molecular weight polyethylene TEREPHTHALATE DRAWING STRENGTH
下载PDF
Influence of Molecular Weight of Ultra-high Molecular Weight Polyacrylonitrile on Its Rheological Behavior in Dimethylsulfoxide
17
作者 沈新元 朱新远 刘永建 《Journal of Donghua University(English Edition)》 EI CAS 2001年第3期7-10,共4页
Ultra-high molecular weight polyacrylonitrile (UHMW PAN ) was prepared by aqueous suspension polymerization, and the effect of molecular weight on its rheological behaviors in dimethylsulfoxide (DMSO) and the spinning... Ultra-high molecular weight polyacrylonitrile (UHMW PAN ) was prepared by aqueous suspension polymerization, and the effect of molecular weight on its rheological behaviors in dimethylsulfoxide (DMSO) and the spinning stability were investigated. It shows that,compared with common polyacrylonitrile (C-PAN),UHMW- PAN/DMS0 solution has smaller non- Newtonian index, larger structural viscosity index, much longer maximum relaxation time, and no first- Newtonian region appears in the flow curves under the same experimental conditions. The explanations for these phenomena are given in the view of chain- entanglements. The optimal technology of preparing UHMW-PAN fibers and hollow fiber membranes could be obtained based on the theological study. 展开更多
关键词 ultra-high molecular weight POLYACRYLONITRILE rheological behavior spinnability.
下载PDF
Progressive Failure Analysis of Quasi-isotropic Self-reinforced Polyethylene Composites by Comparing Unsupervised and Supervised Classifications of Acoustic Emission Data
18
作者 杨璧玲 黄龙全 梁海先 《Journal of Donghua University(English Edition)》 EI CAS 2014年第4期468-473,共6页
Unsupervised and supervised pattern recognition( PR)techniques are used to classify the acoustic emission( AE) data originating from the quasi-isotropic self-reinforced polyethylene composites,in order to identify the... Unsupervised and supervised pattern recognition( PR)techniques are used to classify the acoustic emission( AE) data originating from the quasi-isotropic self-reinforced polyethylene composites,in order to identify the various mechanisms in the multiangle-ply thermoplastic composites. Ultra-high molecular weight polyethylene / low density polyethylene( UHMWPE / LDPE)composites were made and tested under quasi-static tensile load. The failure process was monitored by the AE technique. The collected AE signals were classified by unsupervised and supervised PR techniques, respectively. AE signals were clustered with unsupervised PR scheme automatically and mathematically. While in the supervised PR scheme,the labeled AE data from simple lay-up UHMWPE / LDPE laminates were utilized as the reference data.Comparison was drawn according to the analytical results. Fracture surfaces of the UHMWPE / LDPE specimens were observed by a scanning electron microscope( SEM) for some physical support. By combining both classification results with the observation results,correlations were established between the AE signal classes and their originating damage modes. The comparison between the two classifying schemes showed a good agreement in the main damage modes and their failure process. It indicates both PR techniques are powerful for the complicated thermoplastic composites. Supervised PR scheme can lead to a more precise classification in that a suitable reference data set is input. 展开更多
关键词 ultra-high molecular weight polyethylene / low density polyethylene(UHMWPE / LDPE) composites THERMOPLASTIC progressive failure analysis damage modes pattern recognition(PR) acoustic emission(AE)
下载PDF
Investigation of the Low Molecular Weight Thiol Composition in a Metastatic Prostate Cancer Cell Line (LNCaP) by LC-UV-MS and NMR after Labelling with the Ellman Reagent
19
作者 Stephen Childs Nicolas Haroune +1 位作者 Lee Williams Michael Gronow 《American Journal of Analytical Chemistry》 2017年第1期1-18,共18页
The low molecular weight thiols present in the deproteinized extract of a prostate cancer cell line (LNCaP-FGC) were analysed after derivatization with the Ellman reagent (ESSE). The mixed disulphides formed (RSSE) we... The low molecular weight thiols present in the deproteinized extract of a prostate cancer cell line (LNCaP-FGC) were analysed after derivatization with the Ellman reagent (ESSE). The mixed disulphides formed (RSSE) were fractionated, characterized and quantified by liquid chromatography on a C-18 column using UV detection. This revealed the presence, in femtomoles per cell, of glutathione (8.30 ± 0.73), cysteine (2.71 ± 0.04) and cysteinylglycine (0.83 ± 0.10), accounting for the bulk of the thiol present. Further analysis of the cell extracts using a novel and sensitive mass spectrometry technique allowed the detection of low level of an additional derivative which was identified as cysteinylglycerate using NMRspectroscopy. 展开更多
关键词 Prostate Cancer Low molecular weight THIOLS THIOL Analysis ultra-high Performance Liquid Chromatography Novel THIOL LC-MS NMR Ellman’s REAGENT
下载PDF
Optimum Combination of Femoral Head Size, Femoral Head Material, and Acetabular Cup Liner’s Highly-Cross-Linked Polyethylene Brand for Hip Implant
20
作者 Gladius Lewis Daniel M. Werdofa 《Journal of Biomedical Science and Engineering》 2015年第1期31-39,共9页
Clinical two-dimensional linear wear rate data for acetabular cup liners fabricated using approved brands of highly cross-linked ultra-high-molecular-weight polyethylene, as reported in 39 articles in the literature, ... Clinical two-dimensional linear wear rate data for acetabular cup liners fabricated using approved brands of highly cross-linked ultra-high-molecular-weight polyethylene, as reported in 39 articles in the literature, were analyzed using a statistical technique called response surface methodology. The output was a series comprising16 acceptable combinations of femoral head diameter (HD), femoral head material (HM), and HXLPE brand (PB), each of which would yield the optimum wear rate (herein taken to be a wear rate of practically zero). An example of such a combination is 28- mm-diameter Oxinium? femoral head articulated against an acetabular cup liner fabricated from ReflectionTM HXLPE. The findings in this work may guide an orthopaedic surgeon’s selection of the combination of HD, HM, and PB to use in a primary total hip joint replacement. 展开更多
关键词 Highly-Cross-Linked ultra-high molecular-weight polyethylene ACETABULAR Cup Liner Linear Wear
下载PDF
上一页 1 2 54 下一页 到第
使用帮助 返回顶部