期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
PREPARATION AND CHARACTERIZATION OF ULTRA-HIGH MOLECULAR WEIGHT POLY(ETHYLENE TEREPHTHALATE)(PET)FIBER
1
作者 章谭莉 胡学超 +1 位作者 谢又乐 严建华 《Journal of China Textile University(English Edition)》 EI CAS 1997年第4期7-12,共6页
This paper reports the spinning and drawing behavior of Ultra-high Molecular Weight polyethylene Terephthalate) (UHMW-PET) fibers. The as-spun fibers were produced by dry-jet wet spinning of a 15%-17% solution in 50:5... This paper reports the spinning and drawing behavior of Ultra-high Molecular Weight polyethylene Terephthalate) (UHMW-PET) fibers. The as-spun fibers were produced by dry-jet wet spinning of a 15%-17% solution in 50:50(v:v) trifluroroacetic acid and dichloromethane. Both molecular weight and polymer solution concentration have marked effect on the drawability of the as-spun-fibers. The maximum extension drawing ratio (EDRmax) of as-spun fiber increases with increasing molecular weight, whereas optimal concentration to achieve the EDRmax of as-spun fibers decreases with increasing molecular weight. Drawing speed and temperature during the first step have remarkable effect on the drawability of these fiber during the second step. Relatively lower drawing temperature and drawing speed (19 ℃ , 60 mm/min) during the first drawing step was beneficial to mechanical properties of ultimate fibers. At the range of 210 ℃ to 230 ℃, the draw ratio (DR) during the second step increases with increasing temperature. 展开更多
关键词 ultra-high molecular weight polyethylene terephthalate drawing strength
下载PDF
Dissolving of Ultra‑high Molecular Weight Polyethylene Assisted Through Supercritical Carbon Dioxide to Enhance the Mechanical Properties of Fibers 被引量:1
2
作者 Yi Wang Jiabin Fu +4 位作者 Junrong Yu Qingquan Song Jing Zhu Yan Wang Zuming Hu 《Advanced Fiber Materials》 SCIE CAS 2022年第2期280-292,共13页
The molecular weight of ultra-high molecular weight polyethylene(UHMWPE)fbers is severely decreased compared with raw materials due to high temperature and strong shearing in the dissolving process.In this study,we re... The molecular weight of ultra-high molecular weight polyethylene(UHMWPE)fbers is severely decreased compared with raw materials due to high temperature and strong shearing in the dissolving process.In this study,we reported a novel method to assist the dissolving of UHMWPE in parafn oil without severe degradation in order to improve the tensile strength of resultant fbers.UHMWPE fbers with relatively high molecular weight and more excellent disentanglement efect were prepared by gel-spinning with UHMWPE suspension treated with supercritical carbon dioxide(SC-CO_(2)).The dynamic thermomechanical,mechanical and crystalline properties of UHMWPE extracted fbers and drawn fbers were researched comprehensively.UHMWPE extracted fbers obtained after SC-CO_(2) treatment display a higher molecular weight.More importantly,it is clear that the disentanglement of UHMWPE gel fbers gained by processing SC-CO_(2) has been signifcantly promoted compared with that without SC-CO_(2) treatment from dynamic thermomechanical and rheological results,which could also be demonstrated from the cross-sectional morphology of UHMWPE extracted fbers.Furthermore,the tensile strength of UHMWPE fbers prepared through SC-CO_(2) treating is able to attain 30.11 cN/dtex,increased by 10.3%in comparison to UHMWPE fbers gained without assistance of SC-CO_(2).Beyond that,the thermal behavior and crystallization performance of UHMWPE extracted fbers and drawn fbers acquired by way of SC-CO_(2) treatment have also been enhanced. 展开更多
关键词 ultra-high molecular weight polyethylene fbers Supercritical carbon dioxide Tensile strength Chain entanglement molecular degradation Gel-spinning
原文传递
超高分子量聚乙烯纤维牵伸温度研究 被引量:3
3
作者 陈功林 李方全 +3 位作者 骆强 李晓俊 徐纪刚 孙玉山 《高分子通报》 CAS CSCD 北大核心 2012年第11期58-62,共5页
超高分子量聚乙烯纤维只有经过多级牵伸,才能成为高强度、高模量的高性能纤维。在牵伸工艺中涉及到牵伸温度及牵伸倍率两个工艺参数。本文从牵伸温度角度出发,采用多级牵伸得到了高性能聚乙烯纤维,利用强伸仪、DSC等表征手段,系统地研... 超高分子量聚乙烯纤维只有经过多级牵伸,才能成为高强度、高模量的高性能纤维。在牵伸工艺中涉及到牵伸温度及牵伸倍率两个工艺参数。本文从牵伸温度角度出发,采用多级牵伸得到了高性能聚乙烯纤维,利用强伸仪、DSC等表征手段,系统地研究了各级牵伸温度对超高分子量聚乙烯纤维性能影响规律,探索最佳牵伸温度组合。本项研究表明,牵伸温度直接影响最大牵伸倍率,最终影响到纤维的力学性能,采用三级牵伸可以使纤维力学性能达到较高水平,最佳温度组合为137.5℃—147.3℃—147.3℃,纤维强度32cN.dtex-1。 展开更多
关键词 超高分子量聚乙烯纤维 高性能 高强度 高模量 牵伸温度
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部