To solve the problems of rock strength increase caused by high in-situ stress,the stress release method with rock slot in the bottom hole by an ultra-high-pressure water jet is proposed.The stress conditions of bottom...To solve the problems of rock strength increase caused by high in-situ stress,the stress release method with rock slot in the bottom hole by an ultra-high-pressure water jet is proposed.The stress conditions of bottom hole rock,before and after slotting are analyzed and the stress release mechanism of slotting is clarified.The results show that the stress release by slotting is due to the coupling of three factors:the relief of horizontal stress,the stress concentration zone distancing away from the cutting face,and the increase of pore pressure caused by rock mass expansion;The stress concentration increases the effective stress of rock along the radial distance from O.6R to 1R(R is the radius of the well),and the presence of groove completely releases the stress,it also allows the stress concentration zone to be pushed away from the cutting face,while significantly lowering the value of stresses in the area the drilling bit acting,the maximum stress release efficiency can reach 80%.The effect of slotting characteristics on release efficiency is obvious when the groove location is near the borehole wall.With the increase of groove depth,the stress release efficiency is significantly increased,and the release range of effective stress is enlarged along the axial direction.Therefore,the stress release method and results of simulations in this paper have a guiding significance for best-improving rock-breaking efficiency and further understanding the technique.展开更多
When perforating with an abrasive water jet, it is possible that the pressure in the hole (perforation) will be higher than that in the annulus because of water jet blasting against the hole wall, which also is the ...When perforating with an abrasive water jet, it is possible that the pressure in the hole (perforation) will be higher than that in the annulus because of water jet blasting against the hole wall, which also is the theoretical basis for the technology of hydro-jet fracturing. This paper analyzes the mechanism of generating pressure stagnation in water jet hole, and puts forward a new concept of hydroseal. Then, the distribution of pressure in the hole was simulated with the finite element method. The simulation results showed that the pressure in the hole was higher than that in the annulus. Also, the lower the annular pressure (confining pressure) and the higher the blasting pressure, the greater the pressure difference. An experiment indicated that the cement sample was lifted up under the pressure stagnation in the hole, which proved the finite element simulation results obviously.展开更多
In the process of rock breaking, the conical pick bears great cutting force and wear, as a result, high-pressure water jet technology is used to assist with cutting. However, the effect of the water jet position has n...In the process of rock breaking, the conical pick bears great cutting force and wear, as a result, high-pressure water jet technology is used to assist with cutting. However, the effect of the water jet position has not been studied for rock breaking using a pick. Therefore, the models of rock breaking with different configuration modes of the water jet are established based on SPH combined with FEM. The effect of the water jet pressure, distance between the jet and the pick bit, and cutting depth on the rock breaking performance as well as a comparison of the tension and compression stress are studied via simulation; the simulation results are verified by experiments. The numerical and experimental results indicate that the decrease in the rates of the pick force obviously increases from 25 MPa to 40 MPa, but slowly after 40 MPa, and the optimal distance between the jet and the pick bit is 2 mm under the JFP and JSP modes. The JCP mode is proved the best, followed by the modes of JRP and JFP, and the worst mode is JSP. The decrease in the rates of the pick force of the JCP, JRP, JFP, and JSP modes are up to 30.96%, 28.96%, 33.46%, 28.17%, and 25.42%, respectively, in experiment. Moreover, the JSP mode can be regarded as a special JFP model when the distance between the pick-tip and the jet impact point is 0 mm. This paper has a dominant capability in introducing new numerical and experimental method for the study of rock breaking assisted by water jet and electing the best water jet position from four different configuration modes.展开更多
Based on the theory of nonlinear dynamic finite element,the control equation ofcoal and water jet was acquired in the coal breaking process under a water jet.The calculationmodel of coal breaking under a water jet was...Based on the theory of nonlinear dynamic finite element,the control equation ofcoal and water jet was acquired in the coal breaking process under a water jet.The calculationmodel of coal breaking under a water jet was established;the fluid-structure couplingof water jet and coal was implemented by penalty function and convection calculation.The dynamic process of coal breaking under a water jet was simulated and analyzed bycombining the united fracture criteria of the maximum tensile strain and the maximal shearstrain in the two cases of damage to coal and damage failure to coal.展开更多
This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone...This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone is formed by using high-pressure water jet to cut the coal wall in a continuous and rotational way. In order to study the influence law of weak structure zone in surrounding rock, this paper numerically analyzed the influence law of weak structure zone, and the disturbance law of coal wall and floor under dynamic and static combined load. The results show that when the distance between high-pressure water jet drillings is 3 m and the diameter of drilling is 300 mm, continuous stress superposition zone can be formed. The weak structure zone can transfer and reduce the concentrated static load in surrounding rock, and then form distressed zone. The longer the high-pressure water jet drilling is, the larger the distressed zone is. The stress change and displacement change of non-distressed zone in coal wall and floor are significantly greater than that of distressed zone under dynamic and static combined load. And it shows that the distressed zone can effectively control rock burst in roadway under dynamic and static combined load. High-pressure water jet technology was applied in the haulage gate of 250203 working face in Yanbei Coal Mine, and had gained good effect. The study conclusions provide theoretical foundation and a new guidance for controlling rock burst in roadway.展开更多
The shapes and geometrical parameters of nozzles are key factors for fluidics. The relationship among the reaction thrust, flow rate pressure, diameter do and length L of a cylinder nozzle is analyzed theoretically. T...The shapes and geometrical parameters of nozzles are key factors for fluidics. The relationship among the reaction thrust, flow rate pressure, diameter do and length L of a cylinder nozzle is analyzed theoretically. The simulation of the flow field characteristics was conducted via the FLUENT computational fluid dynamics package. Effects of the inlet conditions and the nozzle dimensions on the reaction thrust of a water jet were addressed particularly. The reaction thrust experiments were performed on a custom-designed test apparatus. The experimental results reveal that a) the nozzle diameter and the inlet conditions exert great influence on the water jet reaction thrust; and b) for L≤4d0, where the nozzle is treated as a thin plate-orifice, the reaction thrust is independent of nozzle length; for L〉4d0, where the nozzle is treated as a long orifice, the reaction thrust can reach maximum under the condition of a certain flow rate. These findings lay a theoretical foundation for the design of nozzles and have significant value, especially for the future development of high-oressure water-let orooulsion technology.展开更多
Recent developments in high pressure water-jet technology have brought the process to the forefront as a means of surface treatment. Water jet technology offers cleaning, cutting, processing as well as potential refin...Recent developments in high pressure water-jet technology have brought the process to the forefront as a means of surface treatment. Water jet technology offers cleaning, cutting, processing as well as potential refinement of surface properties. By adapting the process parameters the surface characteristics can be changed while the profile remains the same. In the present study, water-jet technology was used for the surface treatment of Al-Si alloy to investigate its effect on tribological properties. Dry sliding wear behavior was investigated against AISI 52100 bearing steel ball using a reciprocating ball-on-flat configuration. Optical microscopy examination reveals that ploughing of grains, transgranular and intergranular propagation of cracks;are the mechanisms by which material is removed during water jet treatment. While, on the other hand, SEM observation of the wear track reveals that plastic deformation and delamination are the dominant wear mechanism during the wear process. Water jet treatment was compared to hot isostatic pressing in terms of its effects on wear resistance and surface porosity of Al-Si alloy. It was found that, hot isostatic pressing reduces the total amount of porosity at the expanse of hardness while water jet treatment produces a compressed surface having higher hardness and compressive residual stress, which ultimately increases wear resistance.展开更多
Both experimental and numerical studies were presented on the flow field characteristics in the process of gaseous jet impinging on liquid–water column. The effects of the impinging process on the working performance...Both experimental and numerical studies were presented on the flow field characteristics in the process of gaseous jet impinging on liquid–water column. The effects of the impinging process on the working performance of rocket engine were also analyzed. The experimental results showed that the liquid–water had better flame and smoke dissipation effect in the process of gaseous jet impinging on liquid–water column. However, the interaction between the gaseous jet and the liquid–water column resulted in two pressure oscillations with large amplitude appearing in the combustion chamber of the rocket engine with instantaneous pressure increased by 17.73% and 17.93%, respectively. To analyze the phenomena, a new computational method was proposed by coupling the governing equations of the MIXTURE model with the phase change equations of water and the combustion equation of propellant. Numerical simulations were carried out on the generation of gas, the accelerate gas flow, and the mutual interaction between gaseous jet and liquid–water column.Numerical simulations showed that a cavity would be formed in the liquid–water column when gaseous jet impinged on the liquid–water column. The development speed of the cavity increased obviously after each pressure oscillation. In the initial stage of impingement, the gaseous jet was blocked due to the inertia effect of high-density water, and a large amount of gas gathered in the area between the nozzle throat and the gas–liquid interface. The shock wave was formed in the nozzle expansion section. Under the dual action of the reverse pressure wave and the continuously ejected high-temperature gas upstream, the shock wave moved repeatedly in the nozzle expansion section, which led to the flow of gas in the combustion chamber being blocked, released, re-blocked, and re-released. This was also the main reason for the pressure oscillations in the combustion chamber.展开更多
Analytical examination was made to ascertain the effect of the high pressure water flow on the fabric properties.Polyester/cotton blended cambric was spurted by high pressure water flow. Fabric properties such as hand...Analytical examination was made to ascertain the effect of the high pressure water flow on the fabric properties.Polyester/cotton blended cambric was spurted by high pressure water flow. Fabric properties such as handle,thickness, tensile strength , stiffness and air permeability after the water treatment were investigated.展开更多
Power Cartridges are pyrotechnic devices where hot combustion gases utilized to do mechanical work for disruption of suspected Improvised Explosive Devices(IEDs). It plays a vital role either in destroying the suspici...Power Cartridges are pyrotechnic devices where hot combustion gases utilized to do mechanical work for disruption of suspected Improvised Explosive Devices(IEDs). It plays a vital role either in destroying the suspicious object or making them non-functional by generating the gas pressure on burning of propellant against the water column inside the barrel, Present work is focused on characterisation,numerical solution such as deformation; strain; stress using FEM(Finite Element Method), design qualification, performance and evaluation of power cartridge for disruptor application. Experimental trials for pressure-time(P-t) measurement in closed vessel(CV), various electrical parameters like all fire current(AFC), no fire current(NFC) and ignition delay have been measured. Further, mechanical properties for brass material have been determined. An attempt has been made to characterise the power cartridge by FEM and carrying out the experiments for water-jet application.展开更多
Water inrush and mud gushing are one of the biggest hazards in tunnel construction. Unfavorable geological sections can be observed in almost all railway tunnels under construction or to be constructed, and vary in ex...Water inrush and mud gushing are one of the biggest hazards in tunnel construction. Unfavorable geological sections can be observed in almost all railway tunnels under construction or to be constructed, and vary in extent. Furthermore, due to the different heights of mountains and the lengths of tunnels, the locations of the unfavorable geological sections cannot be fully determined before construction, which increases the risk of water inrush and mud gushing. Based on numerous cases of water inrush and mud gushing in railway tunnels, the paper tries to classify water inrush and mud gushing in railway tunnels in view of the conditions of the surrounding rocks and meteorological factors associated with tunnel excavation. In addition, the causes of water inrush and mud gushing in combination of macroand micromechanisms are summarized, and site-specifc treatment method is put forward. The treatment methods include choosing a method of advance geological forecast according to risk degrees of different sections in the tunnel, determining the items of predictions, and choosing the appropriate methods, i.e. draining-oriented method, blocking-oriented method or draining-and-blocking method. The treatment technologies of railway water inrush and mud gushing are also summarized, including energy relief and pressure relief technology, advance grouting technology, and advance jet grouting technology associated with their key technical features and applicable conditions. The results in terms of treatment methods can provide reference to the prevention and treatment of tunnel water inrush and mud gushing.展开更多
In this paper, the effects of polymer additives and nozzle shape on the proper- ties of high pressure water jet discharging into the air are investigated by theory and experiments. Criteria of judging the jet quality ...In this paper, the effects of polymer additives and nozzle shape on the proper- ties of high pressure water jet discharging into the air are investigated by theory and experiments. Criteria of judging the jet quality are put forward. And, a method that can be used in analysing the fluid flow within the nozzle is developed. Then, the calculated results are compared with the experiments that we carried out; it is shown that the degree of agreement between the two is good. At last, the mechanism to improve on the jet quality with polymer additives is discussed.展开更多
基金support of the National Key Research and Development Program of China(2021YFE0111400)the Shandong provincial natural science foundation(No.ZR2019MEE120)the horizon programme of the EU's funding of the ORCH YD project,EU-H2020(101006752-ORCHYD).
文摘To solve the problems of rock strength increase caused by high in-situ stress,the stress release method with rock slot in the bottom hole by an ultra-high-pressure water jet is proposed.The stress conditions of bottom hole rock,before and after slotting are analyzed and the stress release mechanism of slotting is clarified.The results show that the stress release by slotting is due to the coupling of three factors:the relief of horizontal stress,the stress concentration zone distancing away from the cutting face,and the increase of pore pressure caused by rock mass expansion;The stress concentration increases the effective stress of rock along the radial distance from O.6R to 1R(R is the radius of the well),and the presence of groove completely releases the stress,it also allows the stress concentration zone to be pushed away from the cutting face,while significantly lowering the value of stresses in the area the drilling bit acting,the maximum stress release efficiency can reach 80%.The effect of slotting characteristics on release efficiency is obvious when the groove location is near the borehole wall.With the increase of groove depth,the stress release efficiency is significantly increased,and the release range of effective stress is enlarged along the axial direction.Therefore,the stress release method and results of simulations in this paper have a guiding significance for best-improving rock-breaking efficiency and further understanding the technique.
文摘When perforating with an abrasive water jet, it is possible that the pressure in the hole (perforation) will be higher than that in the annulus because of water jet blasting against the hole wall, which also is the theoretical basis for the technology of hydro-jet fracturing. This paper analyzes the mechanism of generating pressure stagnation in water jet hole, and puts forward a new concept of hydroseal. Then, the distribution of pressure in the hole was simulated with the finite element method. The simulation results showed that the pressure in the hole was higher than that in the annulus. Also, the lower the annular pressure (confining pressure) and the higher the blasting pressure, the greater the pressure difference. An experiment indicated that the cement sample was lifted up under the pressure stagnation in the hole, which proved the finite element simulation results obviously.
基金Supported by National Natural Science Foundation of China(Grant No.51375478)the Fundamental Research Funds for the Central Universities,China(Grant No.2014ZDPY12)the Priority Academic Program Development of Jiangsu High Education Institute of China
文摘In the process of rock breaking, the conical pick bears great cutting force and wear, as a result, high-pressure water jet technology is used to assist with cutting. However, the effect of the water jet position has not been studied for rock breaking using a pick. Therefore, the models of rock breaking with different configuration modes of the water jet are established based on SPH combined with FEM. The effect of the water jet pressure, distance between the jet and the pick bit, and cutting depth on the rock breaking performance as well as a comparison of the tension and compression stress are studied via simulation; the simulation results are verified by experiments. The numerical and experimental results indicate that the decrease in the rates of the pick force obviously increases from 25 MPa to 40 MPa, but slowly after 40 MPa, and the optimal distance between the jet and the pick bit is 2 mm under the JFP and JSP modes. The JCP mode is proved the best, followed by the modes of JRP and JFP, and the worst mode is JSP. The decrease in the rates of the pick force of the JCP, JRP, JFP, and JSP modes are up to 30.96%, 28.96%, 33.46%, 28.17%, and 25.42%, respectively, in experiment. Moreover, the JSP mode can be regarded as a special JFP model when the distance between the pick-tip and the jet impact point is 0 mm. This paper has a dominant capability in introducing new numerical and experimental method for the study of rock breaking assisted by water jet and electing the best water jet position from four different configuration modes.
基金Supported by the National Basic Research Program of China(973 Program)(2005CB221504)the National Natural Science Foundation of China(50534080)the National Science and Technology Supporting Program of China(the 11th Five-Year Program)(2006BAK03B03)
文摘Based on the theory of nonlinear dynamic finite element,the control equation ofcoal and water jet was acquired in the coal breaking process under a water jet.The calculationmodel of coal breaking under a water jet was established;the fluid-structure couplingof water jet and coal was implemented by penalty function and convection calculation.The dynamic process of coal breaking under a water jet was simulated and analyzed bycombining the united fracture criteria of the maximum tensile strain and the maximal shearstrain in the two cases of damage to coal and damage failure to coal.
基金supported by the National Natural Science Foundation of China (Nos. 51574243, 51404269)the Fundamental Research Funds for the Central Universities of China (No. 2014XT01)+1 种基金Guizhou Science and Technology Foundation of China (No. 20152072)the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (No. SZBF2011-6B35)
文摘This paper puts forward using high-pressure water jet technology to control rock burst in roadway, and analyzes the theory of controlling rock burst in roadway by the weak structure zone model. The weak structure zone is formed by using high-pressure water jet to cut the coal wall in a continuous and rotational way. In order to study the influence law of weak structure zone in surrounding rock, this paper numerically analyzed the influence law of weak structure zone, and the disturbance law of coal wall and floor under dynamic and static combined load. The results show that when the distance between high-pressure water jet drillings is 3 m and the diameter of drilling is 300 mm, continuous stress superposition zone can be formed. The weak structure zone can transfer and reduce the concentrated static load in surrounding rock, and then form distressed zone. The longer the high-pressure water jet drilling is, the larger the distressed zone is. The stress change and displacement change of non-distressed zone in coal wall and floor are significantly greater than that of distressed zone under dynamic and static combined load. And it shows that the distressed zone can effectively control rock burst in roadway under dynamic and static combined load. High-pressure water jet technology was applied in the haulage gate of 250203 working face in Yanbei Coal Mine, and had gained good effect. The study conclusions provide theoretical foundation and a new guidance for controlling rock burst in roadway.
基金Funded by the Natural Science Foundation of China (No. 50775081)the National High-tech R&D (863) Program No. 2006AA09Z238)the NCET-07-0330, State Education Ministry.
文摘The shapes and geometrical parameters of nozzles are key factors for fluidics. The relationship among the reaction thrust, flow rate pressure, diameter do and length L of a cylinder nozzle is analyzed theoretically. The simulation of the flow field characteristics was conducted via the FLUENT computational fluid dynamics package. Effects of the inlet conditions and the nozzle dimensions on the reaction thrust of a water jet were addressed particularly. The reaction thrust experiments were performed on a custom-designed test apparatus. The experimental results reveal that a) the nozzle diameter and the inlet conditions exert great influence on the water jet reaction thrust; and b) for L≤4d0, where the nozzle is treated as a thin plate-orifice, the reaction thrust is independent of nozzle length; for L〉4d0, where the nozzle is treated as a long orifice, the reaction thrust can reach maximum under the condition of a certain flow rate. These findings lay a theoretical foundation for the design of nozzles and have significant value, especially for the future development of high-oressure water-let orooulsion technology.
文摘Recent developments in high pressure water-jet technology have brought the process to the forefront as a means of surface treatment. Water jet technology offers cleaning, cutting, processing as well as potential refinement of surface properties. By adapting the process parameters the surface characteristics can be changed while the profile remains the same. In the present study, water-jet technology was used for the surface treatment of Al-Si alloy to investigate its effect on tribological properties. Dry sliding wear behavior was investigated against AISI 52100 bearing steel ball using a reciprocating ball-on-flat configuration. Optical microscopy examination reveals that ploughing of grains, transgranular and intergranular propagation of cracks;are the mechanisms by which material is removed during water jet treatment. While, on the other hand, SEM observation of the wear track reveals that plastic deformation and delamination are the dominant wear mechanism during the wear process. Water jet treatment was compared to hot isostatic pressing in terms of its effects on wear resistance and surface porosity of Al-Si alloy. It was found that, hot isostatic pressing reduces the total amount of porosity at the expanse of hardness while water jet treatment produces a compressed surface having higher hardness and compressive residual stress, which ultimately increases wear resistance.
基金Project supported by the National Natural Science Foundation of China(Grant No.51305204)
文摘Both experimental and numerical studies were presented on the flow field characteristics in the process of gaseous jet impinging on liquid–water column. The effects of the impinging process on the working performance of rocket engine were also analyzed. The experimental results showed that the liquid–water had better flame and smoke dissipation effect in the process of gaseous jet impinging on liquid–water column. However, the interaction between the gaseous jet and the liquid–water column resulted in two pressure oscillations with large amplitude appearing in the combustion chamber of the rocket engine with instantaneous pressure increased by 17.73% and 17.93%, respectively. To analyze the phenomena, a new computational method was proposed by coupling the governing equations of the MIXTURE model with the phase change equations of water and the combustion equation of propellant. Numerical simulations were carried out on the generation of gas, the accelerate gas flow, and the mutual interaction between gaseous jet and liquid–water column.Numerical simulations showed that a cavity would be formed in the liquid–water column when gaseous jet impinged on the liquid–water column. The development speed of the cavity increased obviously after each pressure oscillation. In the initial stage of impingement, the gaseous jet was blocked due to the inertia effect of high-density water, and a large amount of gas gathered in the area between the nozzle throat and the gas–liquid interface. The shock wave was formed in the nozzle expansion section. Under the dual action of the reverse pressure wave and the continuously ejected high-temperature gas upstream, the shock wave moved repeatedly in the nozzle expansion section, which led to the flow of gas in the combustion chamber being blocked, released, re-blocked, and re-released. This was also the main reason for the pressure oscillations in the combustion chamber.
文摘Analytical examination was made to ascertain the effect of the high pressure water flow on the fabric properties.Polyester/cotton blended cambric was spurted by high pressure water flow. Fabric properties such as handle,thickness, tensile strength , stiffness and air permeability after the water treatment were investigated.
文摘Power Cartridges are pyrotechnic devices where hot combustion gases utilized to do mechanical work for disruption of suspected Improvised Explosive Devices(IEDs). It plays a vital role either in destroying the suspicious object or making them non-functional by generating the gas pressure on burning of propellant against the water column inside the barrel, Present work is focused on characterisation,numerical solution such as deformation; strain; stress using FEM(Finite Element Method), design qualification, performance and evaluation of power cartridge for disruptor application. Experimental trials for pressure-time(P-t) measurement in closed vessel(CV), various electrical parameters like all fire current(AFC), no fire current(NFC) and ignition delay have been measured. Further, mechanical properties for brass material have been determined. An attempt has been made to characterise the power cartridge by FEM and carrying out the experiments for water-jet application.
文摘Water inrush and mud gushing are one of the biggest hazards in tunnel construction. Unfavorable geological sections can be observed in almost all railway tunnels under construction or to be constructed, and vary in extent. Furthermore, due to the different heights of mountains and the lengths of tunnels, the locations of the unfavorable geological sections cannot be fully determined before construction, which increases the risk of water inrush and mud gushing. Based on numerous cases of water inrush and mud gushing in railway tunnels, the paper tries to classify water inrush and mud gushing in railway tunnels in view of the conditions of the surrounding rocks and meteorological factors associated with tunnel excavation. In addition, the causes of water inrush and mud gushing in combination of macroand micromechanisms are summarized, and site-specifc treatment method is put forward. The treatment methods include choosing a method of advance geological forecast according to risk degrees of different sections in the tunnel, determining the items of predictions, and choosing the appropriate methods, i.e. draining-oriented method, blocking-oriented method or draining-and-blocking method. The treatment technologies of railway water inrush and mud gushing are also summarized, including energy relief and pressure relief technology, advance grouting technology, and advance jet grouting technology associated with their key technical features and applicable conditions. The results in terms of treatment methods can provide reference to the prevention and treatment of tunnel water inrush and mud gushing.
文摘In this paper, the effects of polymer additives and nozzle shape on the proper- ties of high pressure water jet discharging into the air are investigated by theory and experiments. Criteria of judging the jet quality are put forward. And, a method that can be used in analysing the fluid flow within the nozzle is developed. Then, the calculated results are compared with the experiments that we carried out; it is shown that the degree of agreement between the two is good. At last, the mechanism to improve on the jet quality with polymer additives is discussed.