The heat transfer of hydrocarbon refrigerant across tube bundles have been widely used in refrigeration.Three-dimensional simulation model using volume of fluid(VOF) was presented to study the effects of tube shapes o...The heat transfer of hydrocarbon refrigerant across tube bundles have been widely used in refrigeration.Three-dimensional simulation model using volume of fluid(VOF) was presented to study the effects of tube shapes on flow pattern, film thickness and heat transfer of n-pentane across tube bundles, including circle, ellipse-shaped, egg-shaped and cam-shaped tube bundles. Simulation results agree well with experimental data in the literature. The liquid film thickness of sheet flow and heat transfer for different tube shapes were obtained numerically. The flow pattern transition occurs lower vapor quality for ellipse-shaped tube than other tube shapes. For sheet flow, the liquid film on circle tube and ellipseshaped tube is symmetrically distributed along the circumferential direction. However, the liquid film on egg-shaped tube at circumferential angles(θ) = 15°–60° is thicker than θ = 135°–165°. The liquid film on cam tube at θ = 15°–60° is slightly thinner than θ = 135°–165°. The liquid film thickness varies from thinner to thicker for ellipse-shaped, cam-shaped, egg-shape and circle within θ = 15°–60°. The effect of tube shape is insignificant on thin liquid film thickness. Ellipse-shaped tube has largest heat transfer coefficient for sheet flow. In practical engineering, the tube shape could be designed as ellipse to promote heat transfer.展开更多
As an important lightning protection device in substations,lightning rods are susceptible to vibration and potential structural damage under wind loads.In order to understand their vibration mechanism,it is necessary ...As an important lightning protection device in substations,lightning rods are susceptible to vibration and potential structural damage under wind loads.In order to understand their vibration mechanism,it is necessary to conduct flow analysis.In this study,numerical simulations of the flow field around a 330 kV cylindrical lightning rod with different diameters were performed using the SST k-ωmodel.The flow patterns in different segments of the lightning rod at the same reference wind speed(wind speed at a height of 10 m)and the flow patterns in the same segment at different reference wind speeds were investigated.The variations of lift coefficient,drag coefficient,and vorticity distribution were obtained.The results showed that vortex shedding phenomena occurred in all segments of the lightning rod,and the strength of vortex shedding increased with decreasing diameter.The vorticity magnitude and the root mean square magnitudes of the lift coefficient and drag coefficient also increased accordingly.The time history curves of the lift coefficient and drag coefficient on the surface of the lightning rod exhibited sinusoidal patterns with a single dominant frequency.For the same segment,as the wind speed increased in a certain range,the root mean square values of the lift coefficient and drag coefficient decreased,while their dominant frequencies increased.Moreover,there was a proportional relationship between the dominant frequencies of the lift coefficient and drag coefficient.The findings of this study can provide valuable insights for the refined design of lightning rods with similar structures.展开更多
Recently, tragic tailings dam collapses in Brazil have caused deaths and major destruction and the need to develop technologies capable of preventing damage to people and the environment. Brazilian tailings dams are i...Recently, tragic tailings dam collapses in Brazil have caused deaths and major destruction and the need to develop technologies capable of preventing damage to people and the environment. Brazilian tailings dams are in a situation of uncertainty due to new legislation that even requires decommissioning, an activity that involves many problems and where the risk of failure is the main one. An impact containment structure downstream of these dams can be effective and geotextile tubes, in a new approach, have emerged as an option with advantages in terms of execution, costs and safety. The technology is versatile and can bring many benefits such as the reuse of tailings or filling with low-energy or reused materials. In this research, geotextile tubes were tested as free containment barriers, experiencing impacts in reduced models. The safety factor for the stability of the structure was constructed using an equation which is the ratio between the self-weight of the barrier structure and its coefficient of static friction and the impact pressure, where the data showed an adequate correlation which suggests the viability of mitigating risks.展开更多
Based on the superposition principle of the nucleate boiling and convective heat transfer terms,a new correlation is developed for flow boiling heat transfer characteristics in helically coiled tubes.The effects of th...Based on the superposition principle of the nucleate boiling and convective heat transfer terms,a new correlation is developed for flow boiling heat transfer characteristics in helically coiled tubes.The effects of the geometric and system parameters on heat transfer characteristics in helically coiled tubes are investigated by collecting large amounts of experimental data and analyzing the heat transfer mechanisms. The existing correlations are divided into two categories,and they are calculated with the experimental data.The Dn factor is introduced to take into account the effect of a complex geometrical structure on flow boiling heat transfer.A new correlation is developed for predicting the flow boiling heat transfer coefficients in the helically coiled tubes,which is validated by the experimental data of R134a flow boiling heat transfer in them;and the average relative error and root mean square error of the new correlation are calculated.The results show that the new correlation agrees well with the experimental data,indicating that the new correlation can be used for predicting flow boiling heat transfer characteristics in the helically coiled tubes.展开更多
Based on the fluid network theory,the possibility of utilizing regenerator flow resistance to suppress the direct current (DC) flow induced by the introduction of a double-inlet in a pulse tube cooler is investigate...Based on the fluid network theory,the possibility of utilizing regenerator flow resistance to suppress the direct current (DC) flow induced by the introduction of a double-inlet in a pulse tube cooler is investigated theoretically. The calculation results show that increasing regenerator flow resistance can lead to a smaller extent of DC flow.Therefore,a better stability performance of the cooler can be realized.On this basis,the stability characteristics of the cooler with various regenerator matrix arrangements are studied by experiments.By replacing 30% space of 247 screens of stainless steel mesh at the cold part of the regenerator by lead balls of 0.25 mm diameter,a long-time stable temperature output at 80 K region is achieved. This achievement provides a new way to obtain stable performance for pulse tube coolers at high temperature and is helpful for its application.展开更多
Rotor-assembled strand works as a typical tube insert to achieve heat transfer augmentation and scale inhibition in a heat exchanger.In this work, the PIV experiment regarding the flow fields in a circular tube insert...Rotor-assembled strand works as a typical tube insert to achieve heat transfer augmentation and scale inhibition in a heat exchanger.In this work, the PIV experiment regarding the flow fields in a circular tube inserted with rotor-assembled strand was conducted and the flow characteristics on transverse section and longitudinal section were analyzed.The results showed that swirling flow was produced in the tube inserted with rotors and it was particularly strong within the swing diameter of the rotor on the section that contains the rotor;the average turbulence intensity and the radial velocity were improved notably; the velocity vectors on the longitudinal section remained along the direction of a straight line; both the swirling flow and average turbulence intensity were higher for the rotor with three blades than for the rotor with two blades except that the radial velocity was approximate, but they were all reduced by enlarging the lead of the rotor.Characterization of the flow patterns in a circular tube contributes to understanding the heat transfer efficiency and scale inhibition performance of the rotor-assembled strand and provides guidance for its application.展开更多
Vibration in heat exchangers is one of the main problems that the industry has faced over last few decades. Vibration phenomenon in heat exchangers is of major concern for designers and process engineers since it can ...Vibration in heat exchangers is one of the main problems that the industry has faced over last few decades. Vibration phenomenon in heat exchangers is of major concern for designers and process engineers since it can lead to the tube damage, tube leakage, baffle damage, tube collision damage, fatigue, creep etc. In the present study, vibration response is analyzed on single tube located in the centre of the tube bundle having parallel triangular arrangement (60-) with P/D ratio of 1.44. The experiment is performed for two different flow conditions. This kind of experiment has not been reported in the literature. Under the first condition, the tube vibration response is analyzed when there is no internal flow in the tube and under the second condition, the response is analyzed when the internal tube flow is maintained at a constant value of 0.1 rn/s. The free stream shell side velocity ranges from 0.8 rn/s to 1.3 m/s, the reduced gap velocity varies from 1,80 to 2.66 and the Reynolds number varies from 44500 to 66000. It is observed that the internal tube flow results in larger vibration amplitudes for the tube than that without internal tube flow. It is also established that over the current range of shell side flow velocity, the turbulence is the dominant excitation mechanism for producing vibration in the tube since the amplitude varies directly with the increase in the shell side velocity. Damping has no significant effect on the vibration behavior of the tube for the current velocity range.展开更多
This work was aimed at gaining understanding of the physical behaviours of the flow and temperature separation process in a vortex tube. To investigate the cold mass fraction’s effect on the temperature separation, t...This work was aimed at gaining understanding of the physical behaviours of the flow and temperature separation process in a vortex tube. To investigate the cold mass fraction’s effect on the temperature separation, the numerical calculation was carried out using an algebraic Reynolds stress model (ASM) and the standard k-ε model. The modelling of turbulence of com-pressible, complex flows used in the simulation is discussed. Emphasis is given to the derivation of the ASM for 2D axisymmet-rical flows, particularly to the model constants in the algebraic Reynolds stress equations. The TEFESS code, based on a staggered Finite Volume approach with the standard k-ε model and first-order numerical schemes, was used to carry out all the computations. The predicted results for strongly swirling turbulent compressible flow in a vortex tube suggested that the use of the ASM leads to better agreement between the numerical results and experimental data, while the k-ε model cannot capture the stabilizing effect of the swirl.展开更多
Grains are widely present in industrial productions and processing,and are stored in silos.In the silo,auxiliary structures are added to achieve efficient production.However,little effort has been devoted to the influ...Grains are widely present in industrial productions and processing,and are stored in silos.In the silo,auxiliary structures are added to achieve efficient production.However,little effort has been devoted to the influence of the internal structure of the silo on the granular flow.In this work,a silo with a central decompression tube is studied through experimental measurements and discrete element methods.Then,the influences of the central decompression tube on the flow behavior of grains and wall pressure are analyzed.Results show that the grains are in mass flow in the silo without a central decompression tube,while the grains are in funnel flow in the silo with a central decompression tube.Moreover,regardless of whether there is a central decompression tube in the silo,the maximum pressure appears at the top of the conical silo.In the lower part of the silo,the wall pressure of the silo with a central decompression tube is lower than that of the silo without a central decompression tube.Therefore,a silo with a central decompression tube is more conducive to grain storage and discharge than a silo without a central decompression tube.展开更多
A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distr...A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distribution.Water and polyformaldehyde particle(POM)were used as the liquid and solid phases,respectively.The effects of operating parameters such as the amount of added particles,circulating flow rate,and particle size were systematically investigated.The results showed that the addition of the particles increased the pressure drop in the vertical tube bundle.The maximum pressure drop ratios were 18.65%,21.15%,18.00%,and 21.15%within the experimental range of the amount of added particles for POM1,POM2,POM3,and POM4,respectively.The pressure drop ratio basically decreased with the increase in the circulating flow rate but fluctuated with the increase in the amount of added particles and particle size.The difference in pressure drop ratio decreased with the increase in the circulating flow rate.As the amount of added particles increased,the difference in pressure drop ratio fluctuated at low circulating flow rate but basically decreased at high circulating flow rate.The pressure drop in the vertical tube bundle accounted for about 70%of the overall pressure drop in the up-flow heating chamber and was the main component of the overall pressure within the experimental range.Three-dimensional phase diagrams were established to display the variation ranges of the pressure drop and pressure drop ratio in the vertical tube bundle corresponding to the operating parameters.The research results can provide some reference for the application of the fluidized bed heat transfer technology in the industry.展开更多
Numerical analysis was performed to investigate flow and heat transfer characteristics in spiral coiled tube heat exchanger. Radius of curvature of the spiral coiled tube was gradually increased as total rotating angl...Numerical analysis was performed to investigate flow and heat transfer characteristics in spiral coiled tube heat exchanger. Radius of curvature of the spiral coiled tube was gradually increased as total rotating angle reached 12n. As the varying radius of curvature became a dominant flow parameter, three-dimensional flow analysis was performed to this flow together with different Reynolds numbers while constant wall heat flux condition was set in thermal field. From the analysis, centrifugal force due to curvature effect is found to have significant role in behavior of pressure drop and heat transfer. The centrifugal force enhances pressure drop and heat transfer to have generally higher values in the spiral coiled tube than those in the straight tube. Even then, friction factor and Nusselt number are found to follow the proportionality with square root of the Dean number. Individual effect of flow parameters of Reynolds number and curvature ratio was investigated and effect of Reynolds number is found to be stronger than that of curvature effect.展开更多
The real gas effect is dominant at high pressure and low temperature, and it is modeled by complex equations of state other than perfect gas law. In the vicinity of liquid-vapor critical point, the real gas exhibits u...The real gas effect is dominant at high pressure and low temperature, and it is modeled by complex equations of state other than perfect gas law. In the vicinity of liquid-vapor critical point, the real gas exhibits unusual gas dynamic behavior. In the present work, a transient wave fields in unilateral opening pulse tube is simulated by solving the Navier-Stokes equations incorporated with the Peng-Robinson thermodynamic model. The computational fluid dynamics (CFD) results show a remarkable deviation between perfect gas model and real gas model for contact interface and shockwave. The wave diagram based on the real gas model can help to solve the problem of offset design point.展开更多
The present investigation studies the peristaltic flow of the Jeffrey fluid through a tube of finite length. The fluid is electrically conducting in the presence of an applied magnetic field. Analysis is carried out u...The present investigation studies the peristaltic flow of the Jeffrey fluid through a tube of finite length. The fluid is electrically conducting in the presence of an applied magnetic field. Analysis is carried out under the assumption of long wavelength and low Reynolds number approximations. Expressions of the pressure gradient, volume flow rate, average volume flow rate, and local wall shear stress are obtained. The effects of relaxation time, retardation time, Hartman number on pressure, local wall shear stress, and mechanical efficiency of peristaltic pump are studied. The reflux phenomenon is also investigated. The case of propagation of a non-integral number of waves along the tube walls, which are inherent characteristics of finite length vessels, is also examined.展开更多
Flow and thermal field of a parallel flow vortex tube has been simulated and analyzed numerically. A secondary zone model is found at the core region near the inlet to the middle of the vortex tube. Blockage effect du...Flow and thermal field of a parallel flow vortex tube has been simulated and analyzed numerically. A secondary zone model is found at the core region near the inlet to the middle of the vortex tube. Blockage effect due to a narrow area of the hot exit has deflected air flow towards the cold exit, caused expansion and compression at the cold and hot outlet, respectively. The cooling and heating effect due to energy separation is contributed by expansion and compression of air near the outlet. Coeficient of performance (COP) for a refrigerator is higher as cold mass fraction increases due to a higher temperature difference and cold mass flow rate.展开更多
Based on the Naviev-Stokes equations and the standard κ-ε turbulence model, this paper presents the derivation of the governing equations for the turbulent flow field in a draft tube. The mathematical model for the ...Based on the Naviev-Stokes equations and the standard κ-ε turbulence model, this paper presents the derivation of the governing equations for the turbulent flow field in a draft tube. The mathematical model for the turbulent flow through a draft tube is set up when the boundary conditions, including the inlet boundary conditions, the outlet boundary conditions and the wall boundary conditions, have been implemented. The governing equations are formulated in a discrete form on a staggered grid system by the finite volume method. The second-order central difference approximation and hybrid scheme are used for discretization. The computation and analysis on internal flow through a draft tube have been carried out by using the simplee algorithm and cfx-tasc flow software so as to obtain the simulated flow fields. The calculation results at the design operating condition for the draft tube are presented in this paper. Thereby, an effective method for simulating the internal flow field in a draft tube has been explored.展开更多
A 3D numerical investigation has been carried out to examine periodic laminar flow and heat transfer characteristics in a circular tube with 45°V-baffles with isothermal wall.The computations are based on the fin...A 3D numerical investigation has been carried out to examine periodic laminar flow and heat transfer characteristics in a circular tube with 45°V-baffles with isothermal wall.The computations are based on the finite volume method(FVM),and the SIMPLE algorithm has been implemented.The fluid flow and heat transfer characteristics are presented for Reynolds numbers ranging from 100 to 2000.To generate main longitudinal vortex flows through the tested section,V-baffles with an attack angle of 45°are mounted in tandem and in-line arrangement on the opposite positions of the circular tube.Effects of tube blockage ratio,flow direction on heat transfer and pressure drop in the tube are studied.It is apparent that a pair of longitudinal twisted vortices(P-vortex)created by a V-baffle can induce impingement on a wall of the inter-baffle cavity and lead a drastic increase in heat transfer rate at tube wall.In addition,the larger blockage ratio results in the higher Nusselt number and friction factor values.The computational results show that the optimum thermal enhancement factor is around 3.20 at baffle height of B=0.20 and B=0.25 times of the tube diameter for the V-upstream and V-downstream,respectively.展开更多
In order to optimize the design of the submerged combustion vaporizer(SCV), an experimental apparatus was set up to investigate the heat transfer character outside the tube bundle in SCV. Several experiments were cond...In order to optimize the design of the submerged combustion vaporizer(SCV), an experimental apparatus was set up to investigate the heat transfer character outside the tube bundle in SCV. Several experiments were conducted using water and CO_2 as the heat transfer media in the tubes, respectively. The results indicated that hot air flux, the initial liquid level height and the tube pitch ratio had great influence on the heat transfer coefficient outside the tube bundle(ho). Finally, the air flux associated factor β and height associated factor γ were introduced to propose a new hocorrelation. After verified by experiments using cold water, high pressure CO_2 and liquid N_2 as heat transfer media, respectively, it was found that the biggest deviation between the predicted and the experimental values was less than 25%.展开更多
In order to study the pressure characteristics of slug flow in horizontal curved tubes,two kinds of curved tubes with central angle 45° and 90° respectively are studied,of which are with 0. 5m circumference ...In order to study the pressure characteristics of slug flow in horizontal curved tubes,two kinds of curved tubes with central angle 45° and 90° respectively are studied,of which are with 0. 5m circumference and 26 mm inner diameter are used. When the superficial liquid velocity or the superficial gas velocity is constant,the pressure fluctuations and the probability distribution of the average velocity of slug flow are clear for all of the five experimental conditions. The results of experiment show that the pressure characteristics of slug flow in curved tubes have periodic fluctuations. With the rise of central angle,the period of pressure fluctuation is more obvious. The system pressure of the slug flow increases with the increasing of superficial liquid/gas velocity. Meanwhile,the probability distribution of pressure signal shows regularity,such as unimodal,bimodal or multimodal.展开更多
Characteristics of R22 and its new alternative refrigerant R200 flowing through adiabatic capillary tubes are investigated based on the homogeneous model. Extensive flow variables along tube length such as pressure, t...Characteristics of R22 and its new alternative refrigerant R200 flowing through adiabatic capillary tubes are investigated based on the homogeneous model. Extensive flow variables along tube length such as pressure, temperature, viscosity, velocity. Reynolds number, friction factor and vapor quality etc are compared between the two fluids under the same operating condition. Two cases are considered, namely, either the same tube length or the same mass flow rate as inlet condition. The results show that the mass flow rate in the capillary tube of R290 is 40% lower than that of R22 due to the differences of physical properties between the two fluids. Further. a parametric analysis is performed and it appears that effects of geometric and thermodynamic parameters on mass flow rate of R290 are weaker than that of R22. When the condensing temperature is increased from 40℃ to 50℃ C. the mass flow rate for R22 is increased by 16%. while the increasing rate for R290 is 13%.展开更多
Based on finite volume method, the pressure drop and heat transfer characteristics of one smooth tube and ten different axisymmetric corrugated tubes, including two with uniform corrugation and eight with non-uniform ...Based on finite volume method, the pressure drop and heat transfer characteristics of one smooth tube and ten different axisymmetric corrugated tubes, including two with uniform corrugation and eight with non-uniform corrugation, have been studied. A physical model of the corrugated tube was built, then the numerical simulation of the model was carried out and the numerical simulation results were compared with the empirical formula.The results show that: the friction factor decreases with the increase of Reynolds number ranging from 6000 to 57000, the value of which in the corrugated tubes with non-uniform corrugation(tube 03–10) are smaller than those with uniform corrugation(tube 01–02). The geometry parameters of tube(01) have advantages on the heat transfer enhancement in low Reynolds number flow region(from 6000 to 13000) and tube(07–08)have advantages on the heat transfer enhancement in high Reynolds number flow region(from 13000 to 57000). The vortex, existed in each area between two adjacent corrugations called second flow region, is the root of the enhancement on heat transfer in the corrugated tubes. The effectiveness factor decreases with the increasing of Reynolds number and the performances of the corrugated tubes with pitch of 12.5 mm have advantages than these of 10 mm under the same corrugation geometric parameter.展开更多
基金supported by National Natural Science Foundation of China (52006242)National Natural Science Foundation of China (52192623)+1 种基金Science Foundation of China University of Petroleum,Beijing (ZX20200126)Science and technology program for strategic cooperation of CNPC–China University of Petroleum (ZLZX2020-05)。
文摘The heat transfer of hydrocarbon refrigerant across tube bundles have been widely used in refrigeration.Three-dimensional simulation model using volume of fluid(VOF) was presented to study the effects of tube shapes on flow pattern, film thickness and heat transfer of n-pentane across tube bundles, including circle, ellipse-shaped, egg-shaped and cam-shaped tube bundles. Simulation results agree well with experimental data in the literature. The liquid film thickness of sheet flow and heat transfer for different tube shapes were obtained numerically. The flow pattern transition occurs lower vapor quality for ellipse-shaped tube than other tube shapes. For sheet flow, the liquid film on circle tube and ellipseshaped tube is symmetrically distributed along the circumferential direction. However, the liquid film on egg-shaped tube at circumferential angles(θ) = 15°–60° is thicker than θ = 135°–165°. The liquid film on cam tube at θ = 15°–60° is slightly thinner than θ = 135°–165°. The liquid film thickness varies from thinner to thicker for ellipse-shaped, cam-shaped, egg-shape and circle within θ = 15°–60°. The effect of tube shape is insignificant on thin liquid film thickness. Ellipse-shaped tube has largest heat transfer coefficient for sheet flow. In practical engineering, the tube shape could be designed as ellipse to promote heat transfer.
基金supported by State Grid Ningxia Electric Power Co.,Ltd.under Grant 5229CG220006Natural Science Foundation of Ningxia Province under Grant 2022AAC03629.
文摘As an important lightning protection device in substations,lightning rods are susceptible to vibration and potential structural damage under wind loads.In order to understand their vibration mechanism,it is necessary to conduct flow analysis.In this study,numerical simulations of the flow field around a 330 kV cylindrical lightning rod with different diameters were performed using the SST k-ωmodel.The flow patterns in different segments of the lightning rod at the same reference wind speed(wind speed at a height of 10 m)and the flow patterns in the same segment at different reference wind speeds were investigated.The variations of lift coefficient,drag coefficient,and vorticity distribution were obtained.The results showed that vortex shedding phenomena occurred in all segments of the lightning rod,and the strength of vortex shedding increased with decreasing diameter.The vorticity magnitude and the root mean square magnitudes of the lift coefficient and drag coefficient also increased accordingly.The time history curves of the lift coefficient and drag coefficient on the surface of the lightning rod exhibited sinusoidal patterns with a single dominant frequency.For the same segment,as the wind speed increased in a certain range,the root mean square values of the lift coefficient and drag coefficient decreased,while their dominant frequencies increased.Moreover,there was a proportional relationship between the dominant frequencies of the lift coefficient and drag coefficient.The findings of this study can provide valuable insights for the refined design of lightning rods with similar structures.
文摘Recently, tragic tailings dam collapses in Brazil have caused deaths and major destruction and the need to develop technologies capable of preventing damage to people and the environment. Brazilian tailings dams are in a situation of uncertainty due to new legislation that even requires decommissioning, an activity that involves many problems and where the risk of failure is the main one. An impact containment structure downstream of these dams can be effective and geotextile tubes, in a new approach, have emerged as an option with advantages in terms of execution, costs and safety. The technology is versatile and can bring many benefits such as the reuse of tailings or filling with low-energy or reused materials. In this research, geotextile tubes were tested as free containment barriers, experiencing impacts in reduced models. The safety factor for the stability of the structure was constructed using an equation which is the ratio between the self-weight of the barrier structure and its coefficient of static friction and the impact pressure, where the data showed an adequate correlation which suggests the viability of mitigating risks.
基金The National Natural Science Foundation of China(No.50776055,51076084)
文摘Based on the superposition principle of the nucleate boiling and convective heat transfer terms,a new correlation is developed for flow boiling heat transfer characteristics in helically coiled tubes.The effects of the geometric and system parameters on heat transfer characteristics in helically coiled tubes are investigated by collecting large amounts of experimental data and analyzing the heat transfer mechanisms. The existing correlations are divided into two categories,and they are calculated with the experimental data.The Dn factor is introduced to take into account the effect of a complex geometrical structure on flow boiling heat transfer.A new correlation is developed for predicting the flow boiling heat transfer coefficients in the helically coiled tubes,which is validated by the experimental data of R134a flow boiling heat transfer in them;and the average relative error and root mean square error of the new correlation are calculated.The results show that the new correlation agrees well with the experimental data,indicating that the new correlation can be used for predicting flow boiling heat transfer characteristics in the helically coiled tubes.
基金The National Natural Science Foundation of China(No.50406009).
文摘Based on the fluid network theory,the possibility of utilizing regenerator flow resistance to suppress the direct current (DC) flow induced by the introduction of a double-inlet in a pulse tube cooler is investigated theoretically. The calculation results show that increasing regenerator flow resistance can lead to a smaller extent of DC flow.Therefore,a better stability performance of the cooler can be realized.On this basis,the stability characteristics of the cooler with various regenerator matrix arrangements are studied by experiments.By replacing 30% space of 247 screens of stainless steel mesh at the cold part of the regenerator by lead balls of 0.25 mm diameter,a long-time stable temperature output at 80 K region is achieved. This achievement provides a new way to obtain stable performance for pulse tube coolers at high temperature and is helpful for its application.
基金Supported by the National Natural Science Foundation of China(51576012)
文摘Rotor-assembled strand works as a typical tube insert to achieve heat transfer augmentation and scale inhibition in a heat exchanger.In this work, the PIV experiment regarding the flow fields in a circular tube inserted with rotor-assembled strand was conducted and the flow characteristics on transverse section and longitudinal section were analyzed.The results showed that swirling flow was produced in the tube inserted with rotors and it was particularly strong within the swing diameter of the rotor on the section that contains the rotor;the average turbulence intensity and the radial velocity were improved notably; the velocity vectors on the longitudinal section remained along the direction of a straight line; both the swirling flow and average turbulence intensity were higher for the rotor with three blades than for the rotor with two blades except that the radial velocity was approximate, but they were all reduced by enlarging the lead of the rotor.Characterization of the flow patterns in a circular tube contributes to understanding the heat transfer efficiency and scale inhibition performance of the rotor-assembled strand and provides guidance for its application.
基金the financial and technical support of University of Engineering and Technology, Taxila for carrying out the research
文摘Vibration in heat exchangers is one of the main problems that the industry has faced over last few decades. Vibration phenomenon in heat exchangers is of major concern for designers and process engineers since it can lead to the tube damage, tube leakage, baffle damage, tube collision damage, fatigue, creep etc. In the present study, vibration response is analyzed on single tube located in the centre of the tube bundle having parallel triangular arrangement (60-) with P/D ratio of 1.44. The experiment is performed for two different flow conditions. This kind of experiment has not been reported in the literature. Under the first condition, the tube vibration response is analyzed when there is no internal flow in the tube and under the second condition, the response is analyzed when the internal tube flow is maintained at a constant value of 0.1 rn/s. The free stream shell side velocity ranges from 0.8 rn/s to 1.3 m/s, the reduced gap velocity varies from 1,80 to 2.66 and the Reynolds number varies from 44500 to 66000. It is observed that the internal tube flow results in larger vibration amplitudes for the tube than that without internal tube flow. It is also established that over the current range of shell side flow velocity, the turbulence is the dominant excitation mechanism for producing vibration in the tube since the amplitude varies directly with the increase in the shell side velocity. Damping has no significant effect on the vibration behavior of the tube for the current velocity range.
文摘This work was aimed at gaining understanding of the physical behaviours of the flow and temperature separation process in a vortex tube. To investigate the cold mass fraction’s effect on the temperature separation, the numerical calculation was carried out using an algebraic Reynolds stress model (ASM) and the standard k-ε model. The modelling of turbulence of com-pressible, complex flows used in the simulation is discussed. Emphasis is given to the derivation of the ASM for 2D axisymmet-rical flows, particularly to the model constants in the algebraic Reynolds stress equations. The TEFESS code, based on a staggered Finite Volume approach with the standard k-ε model and first-order numerical schemes, was used to carry out all the computations. The predicted results for strongly swirling turbulent compressible flow in a vortex tube suggested that the use of the ASM leads to better agreement between the numerical results and experimental data, while the k-ε model cannot capture the stabilizing effect of the swirl.
基金We would like to acknowledge the finical support by the Key Laboratory of Agro-Products Postharvest Handling,Ministry of Agriculture support(Grant No.KLAPPH2-2017-04).
文摘Grains are widely present in industrial productions and processing,and are stored in silos.In the silo,auxiliary structures are added to achieve efficient production.However,little effort has been devoted to the influence of the internal structure of the silo on the granular flow.In this work,a silo with a central decompression tube is studied through experimental measurements and discrete element methods.Then,the influences of the central decompression tube on the flow behavior of grains and wall pressure are analyzed.Results show that the grains are in mass flow in the silo without a central decompression tube,while the grains are in funnel flow in the silo with a central decompression tube.Moreover,regardless of whether there is a central decompression tube in the silo,the maximum pressure appears at the top of the conical silo.In the lower part of the silo,the wall pressure of the silo with a central decompression tube is lower than that of the silo without a central decompression tube.Therefore,a silo with a central decompression tube is more conducive to grain storage and discharge than a silo without a central decompression tube.
基金supported by the open foundation of State Key Laboratory of Chemical Engineering (SKL-ChE-18B03)the Municipal Science and Technology Commission of Tianjin (No. 2009ZCKFGX01900)
文摘A cold-model vertical multi-tube circulating fluidized bed evaporator was designed and built to conduct a visualization study on the pressure drop of a liquid–solid two-phase flow and the corresponding particle distribution.Water and polyformaldehyde particle(POM)were used as the liquid and solid phases,respectively.The effects of operating parameters such as the amount of added particles,circulating flow rate,and particle size were systematically investigated.The results showed that the addition of the particles increased the pressure drop in the vertical tube bundle.The maximum pressure drop ratios were 18.65%,21.15%,18.00%,and 21.15%within the experimental range of the amount of added particles for POM1,POM2,POM3,and POM4,respectively.The pressure drop ratio basically decreased with the increase in the circulating flow rate but fluctuated with the increase in the amount of added particles and particle size.The difference in pressure drop ratio decreased with the increase in the circulating flow rate.As the amount of added particles increased,the difference in pressure drop ratio fluctuated at low circulating flow rate but basically decreased at high circulating flow rate.The pressure drop in the vertical tube bundle accounted for about 70%of the overall pressure drop in the up-flow heating chamber and was the main component of the overall pressure within the experimental range.Three-dimensional phase diagrams were established to display the variation ranges of the pressure drop and pressure drop ratio in the vertical tube bundle corresponding to the operating parameters.The research results can provide some reference for the application of the fluidized bed heat transfer technology in the industry.
基金supported by the Second Stage of Brain Korea 21 Projects,Korea
文摘Numerical analysis was performed to investigate flow and heat transfer characteristics in spiral coiled tube heat exchanger. Radius of curvature of the spiral coiled tube was gradually increased as total rotating angle reached 12n. As the varying radius of curvature became a dominant flow parameter, three-dimensional flow analysis was performed to this flow together with different Reynolds numbers while constant wall heat flux condition was set in thermal field. From the analysis, centrifugal force due to curvature effect is found to have significant role in behavior of pressure drop and heat transfer. The centrifugal force enhances pressure drop and heat transfer to have generally higher values in the spiral coiled tube than those in the straight tube. Even then, friction factor and Nusselt number are found to follow the proportionality with square root of the Dean number. Individual effect of flow parameters of Reynolds number and curvature ratio was investigated and effect of Reynolds number is found to be stronger than that of curvature effect.
文摘The real gas effect is dominant at high pressure and low temperature, and it is modeled by complex equations of state other than perfect gas law. In the vicinity of liquid-vapor critical point, the real gas exhibits unusual gas dynamic behavior. In the present work, a transient wave fields in unilateral opening pulse tube is simulated by solving the Navier-Stokes equations incorporated with the Peng-Robinson thermodynamic model. The computational fluid dynamics (CFD) results show a remarkable deviation between perfect gas model and real gas model for contact interface and shockwave. The wave diagram based on the real gas model can help to solve the problem of offset design point.
基金supported by the Visiting Professor Programming of King Sand University(No.KSU-VPP-117)
文摘The present investigation studies the peristaltic flow of the Jeffrey fluid through a tube of finite length. The fluid is electrically conducting in the presence of an applied magnetic field. Analysis is carried out under the assumption of long wavelength and low Reynolds number approximations. Expressions of the pressure gradient, volume flow rate, average volume flow rate, and local wall shear stress are obtained. The effects of relaxation time, retardation time, Hartman number on pressure, local wall shear stress, and mechanical efficiency of peristaltic pump are studied. The reflux phenomenon is also investigated. The case of propagation of a non-integral number of waves along the tube walls, which are inherent characteristics of finite length vessels, is also examined.
文摘Flow and thermal field of a parallel flow vortex tube has been simulated and analyzed numerically. A secondary zone model is found at the core region near the inlet to the middle of the vortex tube. Blockage effect due to a narrow area of the hot exit has deflected air flow towards the cold exit, caused expansion and compression at the cold and hot outlet, respectively. The cooling and heating effect due to energy separation is contributed by expansion and compression of air near the outlet. Coeficient of performance (COP) for a refrigerator is higher as cold mass fraction increases due to a higher temperature difference and cold mass flow rate.
基金Supported by the National Natural Science Foundation of China(10162002) the Key Project of Chinese Ministry Education (204138) the Sci-ence Foundation of Yunnan Education Bureau(5Y0020A)
文摘Based on the Naviev-Stokes equations and the standard κ-ε turbulence model, this paper presents the derivation of the governing equations for the turbulent flow field in a draft tube. The mathematical model for the turbulent flow through a draft tube is set up when the boundary conditions, including the inlet boundary conditions, the outlet boundary conditions and the wall boundary conditions, have been implemented. The governing equations are formulated in a discrete form on a staggered grid system by the finite volume method. The second-order central difference approximation and hybrid scheme are used for discretization. The computation and analysis on internal flow through a draft tube have been carried out by using the simplee algorithm and cfx-tasc flow software so as to obtain the simulated flow fields. The calculation results at the design operating condition for the draft tube are presented in this paper. Thereby, an effective method for simulating the internal flow field in a draft tube has been explored.
基金Supported by the King Mongkut's Institute of Technology Ladkrabang research fund,Thailand(KREF015611)
文摘A 3D numerical investigation has been carried out to examine periodic laminar flow and heat transfer characteristics in a circular tube with 45°V-baffles with isothermal wall.The computations are based on the finite volume method(FVM),and the SIMPLE algorithm has been implemented.The fluid flow and heat transfer characteristics are presented for Reynolds numbers ranging from 100 to 2000.To generate main longitudinal vortex flows through the tested section,V-baffles with an attack angle of 45°are mounted in tandem and in-line arrangement on the opposite positions of the circular tube.Effects of tube blockage ratio,flow direction on heat transfer and pressure drop in the tube are studied.It is apparent that a pair of longitudinal twisted vortices(P-vortex)created by a V-baffle can induce impingement on a wall of the inter-baffle cavity and lead a drastic increase in heat transfer rate at tube wall.In addition,the larger blockage ratio results in the higher Nusselt number and friction factor values.The computational results show that the optimum thermal enhancement factor is around 3.20 at baffle height of B=0.20 and B=0.25 times of the tube diameter for the V-upstream and V-downstream,respectively.
文摘In order to optimize the design of the submerged combustion vaporizer(SCV), an experimental apparatus was set up to investigate the heat transfer character outside the tube bundle in SCV. Several experiments were conducted using water and CO_2 as the heat transfer media in the tubes, respectively. The results indicated that hot air flux, the initial liquid level height and the tube pitch ratio had great influence on the heat transfer coefficient outside the tube bundle(ho). Finally, the air flux associated factor β and height associated factor γ were introduced to propose a new hocorrelation. After verified by experiments using cold water, high pressure CO_2 and liquid N_2 as heat transfer media, respectively, it was found that the biggest deviation between the predicted and the experimental values was less than 25%.
基金Supported by the National Natural Science Foundation of China(No.5130416)
文摘In order to study the pressure characteristics of slug flow in horizontal curved tubes,two kinds of curved tubes with central angle 45° and 90° respectively are studied,of which are with 0. 5m circumference and 26 mm inner diameter are used. When the superficial liquid velocity or the superficial gas velocity is constant,the pressure fluctuations and the probability distribution of the average velocity of slug flow are clear for all of the five experimental conditions. The results of experiment show that the pressure characteristics of slug flow in curved tubes have periodic fluctuations. With the rise of central angle,the period of pressure fluctuation is more obvious. The system pressure of the slug flow increases with the increasing of superficial liquid/gas velocity. Meanwhile,the probability distribution of pressure signal shows regularity,such as unimodal,bimodal or multimodal.
基金Supported by the Fund of"985 Project"of Tianjin University (TD2001011).
文摘Characteristics of R22 and its new alternative refrigerant R200 flowing through adiabatic capillary tubes are investigated based on the homogeneous model. Extensive flow variables along tube length such as pressure, temperature, viscosity, velocity. Reynolds number, friction factor and vapor quality etc are compared between the two fluids under the same operating condition. Two cases are considered, namely, either the same tube length or the same mass flow rate as inlet condition. The results show that the mass flow rate in the capillary tube of R290 is 40% lower than that of R22 due to the differences of physical properties between the two fluids. Further. a parametric analysis is performed and it appears that effects of geometric and thermodynamic parameters on mass flow rate of R290 are weaker than that of R22. When the condensing temperature is increased from 40℃ to 50℃ C. the mass flow rate for R22 is increased by 16%. while the increasing rate for R290 is 13%.
文摘Based on finite volume method, the pressure drop and heat transfer characteristics of one smooth tube and ten different axisymmetric corrugated tubes, including two with uniform corrugation and eight with non-uniform corrugation, have been studied. A physical model of the corrugated tube was built, then the numerical simulation of the model was carried out and the numerical simulation results were compared with the empirical formula.The results show that: the friction factor decreases with the increase of Reynolds number ranging from 6000 to 57000, the value of which in the corrugated tubes with non-uniform corrugation(tube 03–10) are smaller than those with uniform corrugation(tube 01–02). The geometry parameters of tube(01) have advantages on the heat transfer enhancement in low Reynolds number flow region(from 6000 to 13000) and tube(07–08)have advantages on the heat transfer enhancement in high Reynolds number flow region(from 13000 to 57000). The vortex, existed in each area between two adjacent corrugations called second flow region, is the root of the enhancement on heat transfer in the corrugated tubes. The effectiveness factor decreases with the increasing of Reynolds number and the performances of the corrugated tubes with pitch of 12.5 mm have advantages than these of 10 mm under the same corrugation geometric parameter.