Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically...Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically studied in controlled laboratory conditions,and their behavior in real-world,complex environments such as ultra-low permeability reservoirs,is not well understood due to the limited scope of their applications.This study investigates the efficacy and underlying mechanisms of NPs in decreasing injection pressure under various injection conditions(25—85℃,10—25 MPa).The results reveal that under optimal injection conditions,NPs effectively reduce injection pressure by a maximum of 22.77%in core experiment.The pressure reduction rate is found to be positively correlated with oil saturation and permeability,and negatively correlated with temperature and salinity.Furthermore,particle image velocimetry(PIV)experiments(25℃,atmospheric pressure)indicate that the pressure reduction is achieved by NPs through the reduction of wall shear resistance and wettability change.This work has important implications for the design of water injection strategies in ultra-low permeability reservoirs.展开更多
Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection f...Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection floodingapproach is analyzed in the framework of numerical simulations. In particular, the sequence and timing of fracturechanneling and the related impact on production are considered for horizontal wells with different fracturemorphologies. Useful data and information are provided about the regulation of gas channeling and possible strategiesto delay gas channeling and optimize the gas injection volume and fracture parameters. It is shown that inorder to mitigate gas channeling and ensure high production, fracture length on the sides can be controlled andlonger fractures can be created in the middle by which full gas flooding is obtained at the fracture location in themiddle of the horizontal well. A Differential Evolution (DE) algorithm is provided by which the gas injectionvolume and the fracture parameters of gas injection flooding can be optimized. It is shown that an improvedoil recovery factor as high as 6% can be obtained.展开更多
In this paper,the combustion conditions in the boiler furnace of a 660 MWtangential fired pulverized coal boiler are numerically simulated at 15%and 20%rated loads,to study the flexibility of coal-fired power units on...In this paper,the combustion conditions in the boiler furnace of a 660 MWtangential fired pulverized coal boiler are numerically simulated at 15%and 20%rated loads,to study the flexibility of coal-fired power units on ultra-low load operation.The numerical results show that the boiler can operate safely at 15%and 20%ultra-low loads,and the combustion condition in the furnace is better at 20%load,and the tangent circles formed by each characteristic section in the furnace are better,and when the boiler load is decreased to 15%,the tangent circles in the furnace begin to deteriorate.The average flue gas temperature of different areas of the furnace shows that when the boiler furnace operates under ultra-low load conditions,the average smoke temperature of the cold ash hopper at 20%load is basically the same as the average smoke temperature at 15%load;in the burner area,the average smoke temperature of the cold ash hopper at 20%load is about 50 K higher than that at 15%load;in the burned out area,the average smoke temperature of the cold ash hopper at 20%load is slightly higher than that at 15%load.The average temperature of flue gas in the furnace showed a tendency to increase rapidly with the height of the furnace,then slow down and fluctuate the temperature in the burner area,and finally increase slightly in the burnout area due to the further combustion of combustible components to release heat,and then began to decrease.展开更多
The glass-ceramics were prepared with the spodumene mineral as the main raw material,and the effects of ZrO_(2)replacing TiO_(2)on the samples were systematically investigated.The results show that the substitution of...The glass-ceramics were prepared with the spodumene mineral as the main raw material,and the effects of ZrO_(2)replacing TiO_(2)on the samples were systematically investigated.The results show that the substitution of ZrO_(2)for TiO_(2)is not conductive to precipitate𝛽β-quartz solid solution phase,but can improve the transparency and flexural strength of glass-ceramics.And the glass-ceramic with the highest visible light transmittance(87%)and flexural strength(231.80 MPa)exhibits an ultra-low thermal expansion of-0.028×10^(-7)K^(-1)in the region of 30-700℃.展开更多
Techniques and measurements of ultra-low-volume spraving with airplane are studied. From practice it shows tha we can achieve good results of prevention and control of diseases and pests, if we take the following meas...Techniques and measurements of ultra-low-volume spraving with airplane are studied. From practice it shows tha we can achieve good results of prevention and control of diseases and pests, if we take the following measures: The speed of flying is 160 km/h. The height of flying is 5 to 7m for plain and 15 to 20m for mountain area. The flashing point is over 70℃. The sparying width is 60m. The size of fog drop is 80 to 120μ. The density of fog drop is over 10 drops per cm2.展开更多
The current study of minimum quantity lubrication(MQL)concentrates on its performance improvement.By contrast with nanofluid MQL and electrostatic atomization(EA),the proposed nanofluid composite electrostatic sprayin...The current study of minimum quantity lubrication(MQL)concentrates on its performance improvement.By contrast with nanofluid MQL and electrostatic atomization(EA),the proposed nanofluid composite electrostatic spraying(NCES)can enhance the performance of MQL more comprehensively.However,it is largely influenced by the base fluid of external fluid.In this paper,the lubrication property and machining performance of NCES with different types of vegetable oils(castor,palm,soybean,rapeseed,and LB2000 oil)as the base fluids of external fluid were compared and evaluated by friction and milling tests under different flow ratios of external and internal fluids.The spraying current and electrowetting angle were tested to analyze the influence of vegetable oil type as the base fluid of external fluid on NCES performances.The friction test results show that relative to NCES with other vegetable oils as the base fluids of external fluid,NCES with LB2000 as the base fluid of external fluid reduced the friction coefficient and wear loss by 9.4%-27.7%and 7.6%-26.5%,respectively.The milling test results display that the milling force and milling temperature for NCES with LB2000 as the base fluid of external fluid were 1.4%-13.2%and 3.6%-11.2%lower than those for NCES with other vegetable oils as the base fluids of external fluid,respectively.When LB2000/multi-walled carbon nanotube(MWCNT)water-based nanofluid was used as the external/internal fluid and the flow ratio of external and internal fluids was 2:1,NCES showed the best milling performance.This study provides theoretical and technical support for the selection of the base fluid of NCES external fluid.展开更多
Through the rapid carbonation test of SFRRC with different fiber volume fractions at ultralow temperature,the influence of ultra-low temperature damage on the carbonation resistance of SFRRC was analyzed,which provide...Through the rapid carbonation test of SFRRC with different fiber volume fractions at ultralow temperature,the influence of ultra-low temperature damage on the carbonation resistance of SFRRC was analyzed,which provides a theoretical basis for the application of SFRRC in ultra-low temperature engineering.The experimental results show that ultra-low temperatures can significantly weaken the carbonization resistance of SFRRC.When the temperature reaches 160℃,the carbonization depth increases by 67.66%compared with the normal state.The proper amount of steel fiber has an evident influence on the carbonation resistance of the material.However,when the addition amount exceeds the optimum content,the carbonation resistance of the material decreases.The grey prediction model established by constructing the original sequence can reasonably predict the carbonation resistance of SFRRC after ultra-low temperatures.展开更多
Generating sufficient strains on metal surfaces are highly challenging owing to that most metals can deform plastically to relax the strains on the surfaces.In this work,we developed a facile but highly efficient stac...Generating sufficient strains on metal surfaces are highly challenging owing to that most metals can deform plastically to relax the strains on the surfaces.In this work,we developed a facile but highly efficient stacked deposition strategy to in situ activation and reconstruction of NiO/NiOOH on Ni matrix,following with the migration of Fe ions to NiOOH.The Fe sites on the Ni/NiO/NiOOH facilitate the formation of the stable*OH oxygenated intermediates,and the Ni matrix in the catalyst provides the catalyst excellent stability.The oxygen evolution reaction(OER)performance of the stacked NiFe-5 with compressive strain displays the strengthened binding to oxygenated intermediates and superior OER activity,the ultralow overpotentials of 162 versus reversible hydrogen electrode at 10 mA cm^(-2).On the other hand,the Ni-5 without the incorporation of Fe has shown an outstanding hydrogen evolution reaction(HER)activity,affording an overpotential of 47 mV at 10 mA cm^(-2).The NiFe-5‖Ni-5 enables the overall water splitting at a voltage of 1.508 V to achieve 20 mA cm^(-2) with remarkable durability.The stacked deposition strategy improves binding strength of Ni-based catalysts to oxygenated intermediates via generating compressive strain,causing high catalytic activities on OER and HER.展开更多
The technology for spraying a sintering bed and thus improving sinter quality indicators while reducing the emission of flue gas pollutants has recently become an important research topic.The impacts on sinter quality...The technology for spraying a sintering bed and thus improving sinter quality indicators while reducing the emission of flue gas pollutants has recently become an important research topic.The impacts on sinter quality and emissions when spraying the sintering surface with different amounts and flow rates of steam were investigated in this study.The sinter quality indicators were most effectively improved by spraying 180 g of steam flow continuously at a rate of 0.02 m^(3)/min for 15 min after ignition for 8 min.The optimal effect on emission reduction was obtained by spraying 90 g of steam flow continuously at a rate of 0.01 m^(3)/min for 15 min after ignition for 8 min.展开更多
为了探究高速空气燃料热喷涂(activated combustion-high velocity air fuel,AC-HVAF)过程中喷涂粒子撞击基材后的沉积特性。采用AC-HVAF热喷涂技术在AZ80镁合金基体上沉积WC-10Co-4Cr硬质涂层。通过离散沉积实验获得薄层沉积粒子,探讨...为了探究高速空气燃料热喷涂(activated combustion-high velocity air fuel,AC-HVAF)过程中喷涂粒子撞击基材后的沉积特性。采用AC-HVAF热喷涂技术在AZ80镁合金基体上沉积WC-10Co-4Cr硬质涂层。通过离散沉积实验获得薄层沉积粒子,探讨各种沉积形貌的种类、形成原因、结合机制及射流中粒子的径向和轴向分布。结果表明:在AC-HVAF粒子沉积过程中,嵌入型沉积为主要的沉积形貌,同时包含少量的破碎型与空腔型沉积粒子。在涂层的形成过程中,嵌入型沉积对涂层/基体结合性能起重要作用;空腔型沉积的小颗粒及破碎型沉积的大颗粒是造成沉积效率下降的主要原因。喷涂粒子主要集中在射流中心,越靠近射流边缘,空腔型沉积粒子越多,最终导致AC-HVAF粒子射流呈现出空间分布特征。展开更多
基金supported by the National Natural Science Foundation of China(Nos.52074249,U1663206,52204069)Fundamental Research Funds for the Central Universities。
文摘Nanoparticles(NPs)have gained significant attention as a functional material due to their ability to effectively enhance pressure reduction in injection processes in ultra-low permeability reservoirs.NPs are typically studied in controlled laboratory conditions,and their behavior in real-world,complex environments such as ultra-low permeability reservoirs,is not well understood due to the limited scope of their applications.This study investigates the efficacy and underlying mechanisms of NPs in decreasing injection pressure under various injection conditions(25—85℃,10—25 MPa).The results reveal that under optimal injection conditions,NPs effectively reduce injection pressure by a maximum of 22.77%in core experiment.The pressure reduction rate is found to be positively correlated with oil saturation and permeability,and negatively correlated with temperature and salinity.Furthermore,particle image velocimetry(PIV)experiments(25℃,atmospheric pressure)indicate that the pressure reduction is achieved by NPs through the reduction of wall shear resistance and wettability change.This work has important implications for the design of water injection strategies in ultra-low permeability reservoirs.
基金supported by the Forward Looking Basic Major Scientific and Technological Projects of CNPC (Grant No.2021DJ2202).
文摘Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection floodingapproach is analyzed in the framework of numerical simulations. In particular, the sequence and timing of fracturechanneling and the related impact on production are considered for horizontal wells with different fracturemorphologies. Useful data and information are provided about the regulation of gas channeling and possible strategiesto delay gas channeling and optimize the gas injection volume and fracture parameters. It is shown that inorder to mitigate gas channeling and ensure high production, fracture length on the sides can be controlled andlonger fractures can be created in the middle by which full gas flooding is obtained at the fracture location in themiddle of the horizontal well. A Differential Evolution (DE) algorithm is provided by which the gas injectionvolume and the fracture parameters of gas injection flooding can be optimized. It is shown that an improvedoil recovery factor as high as 6% can be obtained.
文摘In this paper,the combustion conditions in the boiler furnace of a 660 MWtangential fired pulverized coal boiler are numerically simulated at 15%and 20%rated loads,to study the flexibility of coal-fired power units on ultra-low load operation.The numerical results show that the boiler can operate safely at 15%and 20%ultra-low loads,and the combustion condition in the furnace is better at 20%load,and the tangent circles formed by each characteristic section in the furnace are better,and when the boiler load is decreased to 15%,the tangent circles in the furnace begin to deteriorate.The average flue gas temperature of different areas of the furnace shows that when the boiler furnace operates under ultra-low load conditions,the average smoke temperature of the cold ash hopper at 20%load is basically the same as the average smoke temperature at 15%load;in the burner area,the average smoke temperature of the cold ash hopper at 20%load is about 50 K higher than that at 15%load;in the burned out area,the average smoke temperature of the cold ash hopper at 20%load is slightly higher than that at 15%load.The average temperature of flue gas in the furnace showed a tendency to increase rapidly with the height of the furnace,then slow down and fluctuate the temperature in the burner area,and finally increase slightly in the burnout area due to the further combustion of combustible components to release heat,and then began to decrease.
文摘The glass-ceramics were prepared with the spodumene mineral as the main raw material,and the effects of ZrO_(2)replacing TiO_(2)on the samples were systematically investigated.The results show that the substitution of ZrO_(2)for TiO_(2)is not conductive to precipitate𝛽β-quartz solid solution phase,but can improve the transparency and flexural strength of glass-ceramics.And the glass-ceramic with the highest visible light transmittance(87%)and flexural strength(231.80 MPa)exhibits an ultra-low thermal expansion of-0.028×10^(-7)K^(-1)in the region of 30-700℃.
文摘Techniques and measurements of ultra-low-volume spraving with airplane are studied. From practice it shows tha we can achieve good results of prevention and control of diseases and pests, if we take the following measures: The speed of flying is 160 km/h. The height of flying is 5 to 7m for plain and 15 to 20m for mountain area. The flashing point is over 70℃. The sparying width is 60m. The size of fog drop is 80 to 120μ. The density of fog drop is over 10 drops per cm2.
基金Supported by National Natural Science Foundation of China(Grant Nos.52175411 and 51205177)Jiangsu Provincial Natural Science Foundation(Grant Nos.BK20171307 and BK2012277).
文摘The current study of minimum quantity lubrication(MQL)concentrates on its performance improvement.By contrast with nanofluid MQL and electrostatic atomization(EA),the proposed nanofluid composite electrostatic spraying(NCES)can enhance the performance of MQL more comprehensively.However,it is largely influenced by the base fluid of external fluid.In this paper,the lubrication property and machining performance of NCES with different types of vegetable oils(castor,palm,soybean,rapeseed,and LB2000 oil)as the base fluids of external fluid were compared and evaluated by friction and milling tests under different flow ratios of external and internal fluids.The spraying current and electrowetting angle were tested to analyze the influence of vegetable oil type as the base fluid of external fluid on NCES performances.The friction test results show that relative to NCES with other vegetable oils as the base fluids of external fluid,NCES with LB2000 as the base fluid of external fluid reduced the friction coefficient and wear loss by 9.4%-27.7%and 7.6%-26.5%,respectively.The milling test results display that the milling force and milling temperature for NCES with LB2000 as the base fluid of external fluid were 1.4%-13.2%and 3.6%-11.2%lower than those for NCES with other vegetable oils as the base fluids of external fluid,respectively.When LB2000/multi-walled carbon nanotube(MWCNT)water-based nanofluid was used as the external/internal fluid and the flow ratio of external and internal fluids was 2:1,NCES showed the best milling performance.This study provides theoretical and technical support for the selection of the base fluid of NCES external fluid.
基金the Natural Science Foundation of Hubei Province of China(No.2020CFB860)。
文摘Through the rapid carbonation test of SFRRC with different fiber volume fractions at ultralow temperature,the influence of ultra-low temperature damage on the carbonation resistance of SFRRC was analyzed,which provides a theoretical basis for the application of SFRRC in ultra-low temperature engineering.The experimental results show that ultra-low temperatures can significantly weaken the carbonization resistance of SFRRC.When the temperature reaches 160℃,the carbonization depth increases by 67.66%compared with the normal state.The proper amount of steel fiber has an evident influence on the carbonation resistance of the material.However,when the addition amount exceeds the optimum content,the carbonation resistance of the material decreases.The grey prediction model established by constructing the original sequence can reasonably predict the carbonation resistance of SFRRC after ultra-low temperatures.
基金supported by the National Natural Science Foundations of China(21965024,22269016,51721002)the Inner Mongolia funding(2020JQ01,21300-5223601)the funding of Inner Mongolia University(10000-21311201/137,213005223601/003,21300-5223707)。
文摘Generating sufficient strains on metal surfaces are highly challenging owing to that most metals can deform plastically to relax the strains on the surfaces.In this work,we developed a facile but highly efficient stacked deposition strategy to in situ activation and reconstruction of NiO/NiOOH on Ni matrix,following with the migration of Fe ions to NiOOH.The Fe sites on the Ni/NiO/NiOOH facilitate the formation of the stable*OH oxygenated intermediates,and the Ni matrix in the catalyst provides the catalyst excellent stability.The oxygen evolution reaction(OER)performance of the stacked NiFe-5 with compressive strain displays the strengthened binding to oxygenated intermediates and superior OER activity,the ultralow overpotentials of 162 versus reversible hydrogen electrode at 10 mA cm^(-2).On the other hand,the Ni-5 without the incorporation of Fe has shown an outstanding hydrogen evolution reaction(HER)activity,affording an overpotential of 47 mV at 10 mA cm^(-2).The NiFe-5‖Ni-5 enables the overall water splitting at a voltage of 1.508 V to achieve 20 mA cm^(-2) with remarkable durability.The stacked deposition strategy improves binding strength of Ni-based catalysts to oxygenated intermediates via generating compressive strain,causing high catalytic activities on OER and HER.
文摘The technology for spraying a sintering bed and thus improving sinter quality indicators while reducing the emission of flue gas pollutants has recently become an important research topic.The impacts on sinter quality and emissions when spraying the sintering surface with different amounts and flow rates of steam were investigated in this study.The sinter quality indicators were most effectively improved by spraying 180 g of steam flow continuously at a rate of 0.02 m^(3)/min for 15 min after ignition for 8 min.The optimal effect on emission reduction was obtained by spraying 90 g of steam flow continuously at a rate of 0.01 m^(3)/min for 15 min after ignition for 8 min.
文摘为了探究高速空气燃料热喷涂(activated combustion-high velocity air fuel,AC-HVAF)过程中喷涂粒子撞击基材后的沉积特性。采用AC-HVAF热喷涂技术在AZ80镁合金基体上沉积WC-10Co-4Cr硬质涂层。通过离散沉积实验获得薄层沉积粒子,探讨各种沉积形貌的种类、形成原因、结合机制及射流中粒子的径向和轴向分布。结果表明:在AC-HVAF粒子沉积过程中,嵌入型沉积为主要的沉积形貌,同时包含少量的破碎型与空腔型沉积粒子。在涂层的形成过程中,嵌入型沉积对涂层/基体结合性能起重要作用;空腔型沉积的小颗粒及破碎型沉积的大颗粒是造成沉积效率下降的主要原因。喷涂粒子主要集中在射流中心,越靠近射流边缘,空腔型沉积粒子越多,最终导致AC-HVAF粒子射流呈现出空间分布特征。