RNA modification has recently been proposed to play important roles in biological regulation. The detection and quantification of RNA modifications generally are challenging tasks since most of the modifications exist...RNA modification has recently been proposed to play important roles in biological regulation. The detection and quantification of RNA modifications generally are challenging tasks since most of the modifications exist in low abundance in vivo. Here we developed an on-line trapping/capillary hydrophilic-interaction liquid chromatography/electrospray ionization-mass spectrometry(on-line trapping/cHILIC/MS) method for sensitive and simultaneous quantification of RNA modifications of N^6-methyladenosine(m^6A) and 5-methylcytosine(5-mC) from human blood. The hydrophilic organic-silica hybrid monolith was prepared using sol-gel combined with "thiol-ene" click reaction for the separation of nucleosides. A poly(MAA-co-EGDMA) monolithic capillary was used as the on-line trapping column.With the developed on-line trapping/cHILIC/MS analytical platform, the detection limits of m^6A and 5-mC can reach to 0.06 fmol and 0.10 fmol. We then investigated the contents of m^6A and 5-mC in human blood RNA from healthy persons at the age of 6-14 and 60-68 years. Our results showed that both m^6A and 5-mC contents were significantly decreased in elder persons, suggesting the RNA modifications of m^6A and 5-mC are correlated to aging.展开更多
N-nitrosodimethylamine (NDMA) and several other N-nitrosamines have been detected as disinfection by-products in drinking waters in many countries around the world. An ultra-performance liquid chromatography- tandem...N-nitrosodimethylamine (NDMA) and several other N-nitrosamines have been detected as disinfection by-products in drinking waters in many countries around the world. An ultra-performance liquid chromatography- tandem mass spectrometry method with solid phase extraction sample preparation was developed to study the occurrence of N-nitrosamines in several water treatment plants and distribution systems in China. Isotope labeled N-nitrosodi-n-propylamine-dl4 (NDPA-dl4) was selected as the internal standard for quantification. The solid phase extraction procedures including pH, enrichment process and MS/MS parameters including capillary voltage, cone gas flow, cone voltage, collision energy were optimized to give average recoveries of 26% to 112% for nine N- nitrosamine species. The instrument detection limits were estimated to range from 0.5 to 5μg.L-1 for the nine N- nitrosamine species. NDMA and several other N-nitrosa- mines were found at fairly high concentrations in several water treatment plants and distribution systems. NDMA was found in all locations, and the highest concentrations in cities B, G, T, and W were 3.0, 35.7, 21.3, and 19.7 ng. L 1, respectively. A wide range of N-nitrosamines concentrations and species were observed in different locations. Higher concentrations of N-nitrosamines were detected in distribution systems that were further away from the treatment plants, suggesting that the contact time between the residual disinfectant and natural organic matter may play an important role in the formation of these compounds.展开更多
As the roles of glycans in health and disease continue to be unraveled,it is becoming apparent that glycans’immense complexity cannot be ignored.To fully delineate glycan structures,we developed an integrative approa...As the roles of glycans in health and disease continue to be unraveled,it is becoming apparent that glycans’immense complexity cannot be ignored.To fully delineate glycan structures,we developed an integrative approach combining a set of cost-effective,widespread,and easy-to-handle analytical methods.The key feature of our workflow is the exploitation of a removable fluorescent label—exemplified by 9-fluorenylmethyl chloroformate(Fmoc)—to bridge the gap between diverse glycoanalytical methods,especially multiplexed capillary gel electrophoresis with laser-induced fluorescence detection(xCGELIF)and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry(MALDI-TOFMS).Through the detailed structural analysis of selected,dauntingly complex N-glycans from chicken ovalbumin,horse serum,and bovine transferrin,we illustrate the capabilities of the presented strategy.Moreover,this approach“visualizes”N-glycans that have been difficult to identify thus far—such as the sulfated glycans on human immunoglobulin A—including minute changes in glycan structures,potentially providing useful new targets for biomarker discovery.展开更多
Metabolite analysis or metabolomics is an important component of systems biology in the post-genomic era.Although separate liquid chromatography(LC) methods for quantification of the major classes of polar metabolit...Metabolite analysis or metabolomics is an important component of systems biology in the post-genomic era.Although separate liquid chromatography(LC) methods for quantification of the major classes of polar metabolites of plants have been available for decades,a single method that enables simultaneous determination of hundreds of polar metabolites is possible only with gas chromatography-mass spectrometry(GC-MS) techniques.The rapid expansion of new LC stationary phases in the market and the ready access of mass spectrometry in many laboratories provides an excellent opportunity for developing LC-MS based methods for multitarget quantification of polar metabolites.Although various LC-MS methods have been developed over the last 10 years with the aim to quantify one or more classes of polar compounds in different matrices,currently there is no consensus LC-MS method that is widely used in plant metabolomics studies.The most promising methods applicable to plant metabolite analysis will be reviewed in this paper and the major problems encountered highlighted.The aim of this review is to provide plant scientists,with limited to moderate experience in analytical chemistry,with up-to-date and simplified information regarding the current status of polar metabolite analysis using LC-MS techniques.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 21522507, 21672166, 21728802, 21721005)
文摘RNA modification has recently been proposed to play important roles in biological regulation. The detection and quantification of RNA modifications generally are challenging tasks since most of the modifications exist in low abundance in vivo. Here we developed an on-line trapping/capillary hydrophilic-interaction liquid chromatography/electrospray ionization-mass spectrometry(on-line trapping/cHILIC/MS) method for sensitive and simultaneous quantification of RNA modifications of N^6-methyladenosine(m^6A) and 5-methylcytosine(5-mC) from human blood. The hydrophilic organic-silica hybrid monolith was prepared using sol-gel combined with "thiol-ene" click reaction for the separation of nucleosides. A poly(MAA-co-EGDMA) monolithic capillary was used as the on-line trapping column.With the developed on-line trapping/cHILIC/MS analytical platform, the detection limits of m^6A and 5-mC can reach to 0.06 fmol and 0.10 fmol. We then investigated the contents of m^6A and 5-mC in human blood RNA from healthy persons at the age of 6-14 and 60-68 years. Our results showed that both m^6A and 5-mC contents were significantly decreased in elder persons, suggesting the RNA modifications of m^6A and 5-mC are correlated to aging.
文摘N-nitrosodimethylamine (NDMA) and several other N-nitrosamines have been detected as disinfection by-products in drinking waters in many countries around the world. An ultra-performance liquid chromatography- tandem mass spectrometry method with solid phase extraction sample preparation was developed to study the occurrence of N-nitrosamines in several water treatment plants and distribution systems in China. Isotope labeled N-nitrosodi-n-propylamine-dl4 (NDPA-dl4) was selected as the internal standard for quantification. The solid phase extraction procedures including pH, enrichment process and MS/MS parameters including capillary voltage, cone gas flow, cone voltage, collision energy were optimized to give average recoveries of 26% to 112% for nine N- nitrosamine species. The instrument detection limits were estimated to range from 0.5 to 5μg.L-1 for the nine N- nitrosamine species. NDMA and several other N-nitrosa- mines were found at fairly high concentrations in several water treatment plants and distribution systems. NDMA was found in all locations, and the highest concentrations in cities B, G, T, and W were 3.0, 35.7, 21.3, and 19.7 ng. L 1, respectively. A wide range of N-nitrosamines concentrations and species were observed in different locations. Higher concentrations of N-nitrosamines were detected in distribution systems that were further away from the treatment plants, suggesting that the contact time between the residual disinfectant and natural organic matter may play an important role in the formation of these compounds.
基金support from the German Federal Ministry of Education and Research(BMBF)under the project“Die Golgi Glykan Fabrik 2.0”(031A557C for Samanta Cajic and Erdmann Rapp)the European Commission(EC)under the project“HighGlycan”(278535 for RenéHennig and Erdmann Rapp)the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)under the project“The concert of dolicholbased glycosylation:from molecules to disease models”(FOR2509 for Valerian Grote and Erdmann Rapp).
文摘As the roles of glycans in health and disease continue to be unraveled,it is becoming apparent that glycans’immense complexity cannot be ignored.To fully delineate glycan structures,we developed an integrative approach combining a set of cost-effective,widespread,and easy-to-handle analytical methods.The key feature of our workflow is the exploitation of a removable fluorescent label—exemplified by 9-fluorenylmethyl chloroformate(Fmoc)—to bridge the gap between diverse glycoanalytical methods,especially multiplexed capillary gel electrophoresis with laser-induced fluorescence detection(xCGELIF)and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry(MALDI-TOFMS).Through the detailed structural analysis of selected,dauntingly complex N-glycans from chicken ovalbumin,horse serum,and bovine transferrin,we illustrate the capabilities of the presented strategy.Moreover,this approach“visualizes”N-glycans that have been difficult to identify thus far—such as the sulfated glycans on human immunoglobulin A—including minute changes in glycan structures,potentially providing useful new targets for biomarker discovery.
基金funded by the Dairy Futures Co-operative Research Centre
文摘Metabolite analysis or metabolomics is an important component of systems biology in the post-genomic era.Although separate liquid chromatography(LC) methods for quantification of the major classes of polar metabolites of plants have been available for decades,a single method that enables simultaneous determination of hundreds of polar metabolites is possible only with gas chromatography-mass spectrometry(GC-MS) techniques.The rapid expansion of new LC stationary phases in the market and the ready access of mass spectrometry in many laboratories provides an excellent opportunity for developing LC-MS based methods for multitarget quantification of polar metabolites.Although various LC-MS methods have been developed over the last 10 years with the aim to quantify one or more classes of polar compounds in different matrices,currently there is no consensus LC-MS method that is widely used in plant metabolomics studies.The most promising methods applicable to plant metabolite analysis will be reviewed in this paper and the major problems encountered highlighted.The aim of this review is to provide plant scientists,with limited to moderate experience in analytical chemistry,with up-to-date and simplified information regarding the current status of polar metabolite analysis using LC-MS techniques.