Ceramic cutting inserts are a type of cutting tool commonly used in high-speed metal cutting applications.However,the wear of these inserts caused by friction between the workpiece and cutting inserts limits their ove...Ceramic cutting inserts are a type of cutting tool commonly used in high-speed metal cutting applications.However,the wear of these inserts caused by friction between the workpiece and cutting inserts limits their overall effectiveness.In order to improve the tool life and reduce wear,this study introduces an emerging method called magnetic field-assisted batch polishing(MABP)for simultaneously polishing multiple ceramic cutting inserts.Several polishing experiments were conducted under different conditions,and the wear characteristics were clarified by cutting S136H steel.The results showed that after 15 min of polishing,the surface roughness at the flank face,edge,and nose of the inserts was reduced to below 2.5 nm,6.25 nm,and 45.8 nm,respectively.Furthermore,the nose radii of the inserts did not change significantly,and there were no significant changes in the weight percentage of elements before and after polishing.Additionally,the tool life of the batch polished inserts was found to be up to 1.75 times longer than that of unpolished inserts.These findings suggest that the MABP method is an effective way to mass polish ceramic cutting inserts,resulting in significantly reduced tool wear.Furthermore,this novel method offers new possibilities for polishing other tools.展开更多
The research on the parameters optimization for gasbag polishing machine tools, mainly aims at a better kinematics performance and a design scheme. Serial structural arm is mostly employed in gasbag polishing machine ...The research on the parameters optimization for gasbag polishing machine tools, mainly aims at a better kinematics performance and a design scheme. Serial structural arm is mostly employed in gasbag polishing machine tools at present, but it is disadvantaged by its complexity, big inertia, and so on. In the multi-objective parameters optimization, it is very difficult to select good parameters to achieve excellent performance of the mechanism. In this paper, a statistics parameters optimization method based on index atlases is presented for a novel 5-DOF gasbag polishing machine tool. In the position analyses, the structure and workspace for a novel 5-DOF gasbag polishing machine tool is developed, where the gasbag polishing machine tool is advantaged by its simple structure, lower inertia and bigger workspace. In the kinematics analyses, several kinematics performance evaluation indices of the machine tool are proposed and discussed, and the global kinematics performance evaluation atlases are given. In the parameters optimization process, considering the assembly technique, a design scheme of the 5-DOF gasbag polishing machine tool is given to own better kinematics performance based on the proposed statistics parameters optimization method, and the global linear isotropic performance index is 0.5, the global rotational isotropic performance index is 0.5, the global linear velocity transmission performance index is 1.012 3 m/s in the case of unit input matrix, the global rotational velocity transmission performance index is 0.102 7 rad/s in the case of unit input matrix, and the workspace volume is 1. The proposed research provides the basis for applications of the novel 5-DOF gasbag polishing machine tool, which can be applied to the modern industrial fields requiring machines with lower inertia, better kinematics transmission performance and better technological efficiency.展开更多
Ultra-precision machine tool is the most important physical tool to machining the workpiece with the frequency domain error requirement, in the design process of which the dynamic accuracy design(DAD) is indispensable...Ultra-precision machine tool is the most important physical tool to machining the workpiece with the frequency domain error requirement, in the design process of which the dynamic accuracy design(DAD) is indispensable and the related research is rarely available. In light of above reasons, a DAD method of ultra-precision machine tool is proposed in this paper, which is based on the frequency domain error allocation.The basic procedure and enabling knowledge of the DAD method is introduced. The application case of DAD method in the ultra-precision flycutting machine tool for KDP crystal machining is described to show the procedure detailedly. In this case, the KDP workpiece surface has the requirements in four different spatial frequency bands, and the emphasis for this study is put on the middle-frequency band with the PSD specifications. The results of the application case basically show the feasibility of the proposed DAD method. The DAD method of ultra-precision machine tool can effectively minimize the technical risk and improve the machining reliability of the designed machine tool. This paper will play an important role in the design and manufacture of new ultra-precision machine tool.展开更多
The dynamic performances of an ultra-precision fly cutting machine tool(UFCMT)has a dramatic impact on the quality of ultra-precision machining.In this study,the dynamic model of an UFCMT was established based on the ...The dynamic performances of an ultra-precision fly cutting machine tool(UFCMT)has a dramatic impact on the quality of ultra-precision machining.In this study,the dynamic model of an UFCMT was established based on the transfer matrix method for multibody systems.In particular,the large-span scale flow field mesh model was created;and the variation in linear and angular stiffness of journal and thrust bearings with respect to film thickness was investigated by adopting the dynamic mesh technique.The dynamic model was proven to be valid by comparing the dynamic characteristics of the machine tool obtained by numerical simulation with the experimental results.In addition,the power spectrum density estimation method was adopted to simulate the statistical ambient vibration excitation by processing the ambient vibration signal measured over a long period of time.Applying it to the dynamic model,the dynamic response of the tool tip under ambient vibration was investigated.The results elucidated that the tool tip response was significantly affected by ambient vibration,and the isolation foundation had a good effect on vibration isolation.展开更多
In order to minimize vibration and improve rotary precision of spindle, we apply active vibration control technique to ultra-precision turning machine based on the analysis of vibration characteristic of aerostatic be...In order to minimize vibration and improve rotary precision of spindle, we apply active vibration control technique to ultra-precision turning machine based on the analysis of vibration characteristic of aerostatic bearing spindle. Using aerostatic bearing itself as actuator, the vibration of spindle is controlled by adjusting admission pressure respectively and by changing pressure distribution in the bearing. The experiments and simulations prove that this method can minimize the vibration of spindle effectively.展开更多
A new idea for designing wheel patterns is presented so as to solve theproblems about machining accuracy of workpiece and wear of honing wheel in ultra-precision planehoning. The influence factors on motion principle ...A new idea for designing wheel patterns is presented so as to solve theproblems about machining accuracy of workpiece and wear of honing wheel in ultra-precision planehoning. The influence factors on motion principle and pattern structures are analyzed andoptimization machining parameters are obtained. By calculating effective cutting length on thesurface of workpiece cut by wheel's abrasive and the orbit of one point on the surface of workpiececontacting with wheel, the wear coefficient of different kinds of wheels and accuracy coefficient ofworkpiece machined by corresponding wheels are obtained. Furthermore, the simulation results showthat the optimal pattern structure of wheel turns out to have lower wheel wear and higher machiningaccuracy.展开更多
In this paper, the modified slip/fracture activation model has been used in order to understand the mechanism of ductile-brittle transition on the R-plane of sapphire during ultra-precision machining by reflecting dir...In this paper, the modified slip/fracture activation model has been used in order to understand the mechanism of ductile-brittle transition on the R-plane of sapphire during ultra-precision machining by reflecting direction of resultant force. Anisotropic characteristics of crack morphology and ductility of machining depending on cutting direction were explained in detail with modified fracture cleavage and plastic deformation parameters. Through the analysis, it was concluded that crack morphologies were mainly determined by the interaction of multiple fracture systems activated while, critical depth of cut was determined by the dominant plastic deformation parameter. In addition to this, by using proportionality relationship between magnitude of resultant force and depth of cut in the ductile region, an empirical model for critical depth of cut was developed.展开更多
There have been various theoretical attempts by researchers worldwide to link up different scales of plasticity studies from the nano-, micro- and macro-scale of observation, based on molecular dynamics, crystal plast...There have been various theoretical attempts by researchers worldwide to link up different scales of plasticity studies from the nano-, micro- and macro-scale of observation, based on molecular dynamics, crystal plasticity and continuum mechanics. Very few attempts, however, have been reported in ultra-precision machining studies. A mesoplasticity approach advocated by Lee and Yang is adopted by the authors and is successfully applied to studies of the micro-cutting mechanisms in ultra-precision machining. Traditionally, the shear angle in metal cutting, as well as the cutting force variation, can only be determined from cutting tests. In the pioneering work of the authors, the use of mesoplasticity theory enables prediction of the fluctuation of the shear angle and micro-cutting force, shear band formation, chip morphology in diamond turning and size effect in nano-indentation. These findings are verified by experiments. The mesoplasticity formulation opens up a new direction of studies to enable how the plastic behaviour of materials and their constitutive representations in deformation processing, such as machining can be predicted, assessed and deduced from the basic properties of the materials measurable at the microscale.展开更多
During ultra-precision machining, machining accuracy is determined by many factors and interaction of these factors. Error sources are systematically analyzed for ultra-precision machine tools, and the influencing deg...During ultra-precision machining, machining accuracy is determined by many factors and interaction of these factors. Error sources are systematically analyzed for ultra-precision machine tools, and the influencing degree of each factor is presented to provide orientation for error reduction and error compensation.展开更多
Digital manufacturing technology can be used in optical field to solve many problems caused by traditional machining. According to the characters of digital manufacturing and the practical applications of ultra-precis...Digital manufacturing technology can be used in optical field to solve many problems caused by traditional machining. According to the characters of digital manufacturing and the practical applications of ultra-precision machining,the process of digital ultra-precision machining and its technical contents were presented in this paper. In the conclusions,it was stated that the digitalization of ultra-precision machining will be an economical and efficient way for the production of new sorts of optical workpieces.展开更多
This paper presents a terahertz(THz)band-pass filter using ultra-precision machining technology based on Chebyshev filter prototype.This iris inductive window coupled waveguide filter was designed by using 8 resonan...This paper presents a terahertz(THz)band-pass filter using ultra-precision machining technology based on Chebyshev filter prototype.This iris inductive window coupled waveguide filter was designed by using 8 resonant cavities with a center frequency of 345 GHz and a 7% bandwidth.The final design fulfills the desired specifications and presents the minimum insertion loss of 1.55 d B and the return loss of less than 15 d B at 345 GHz.The stop-band rejection is50 d B off the center frequency about 30 GHz,which means it has a good performance of high stop-band suppression.Compared with the recent development of THz filters,this filter possesses the characteristic of simple structure and is easy to machining.展开更多
The infrared conformal window is one of the most critical components in aircraft.Conformal windows with high performance bring low aberrations,high aerodynamic performance,reliability in extreme working environments,a...The infrared conformal window is one of the most critical components in aircraft.Conformal windows with high performance bring low aberrations,high aerodynamic performance,reliability in extreme working environments,and added value for aircraft.Through the past decades,remarkable advances have been achieved in manufacturing technologies for conformal windows,where the machining accuracy approaches the nanometer level,and the surface form becomes more complex.These advances are critical to aircraft development,and these manufacturing technologies also have significant reference values for other directions of the ultra-precision machining field.In this review,the infrared materials suitable for manufacturing conformal windows are introduced and compared with insights into their performances.The remarkable advances and concrete work accomplished by researchers are reviewed.The challenges in manufacturing conformal windows that should be faced in the future are discussed.展开更多
Additive manufacturing,particularly 3D printing,has revolutionized the manufacturing industry by allowing the production of complex and intricate parts at a lower cost and with greater efficiency.However,3D-printed pa...Additive manufacturing,particularly 3D printing,has revolutionized the manufacturing industry by allowing the production of complex and intricate parts at a lower cost and with greater efficiency.However,3D-printed parts frequently require post-processing or integration with other machining technologies to achieve the desired surface finish,accuracy,and mechanical properties.Ultra-precision machining(UPM)is a potential machining technology that addresses these challenges by enabling high surface quality,accuracy,and repeatability in 3D-printed components.This study provides an overview of the current state of UPM for 3D printing,including the current UPM and 3D printing stages,and the application of UPM to 3D printing.Following the presentation of current stage perspectives,this study presents a detailed discussion of the benefits of combining UPM with 3D printing and the opportunities for leveraging UPM on 3D printing or supporting each other.In particular,future opportunities focus on cutting tools manufactured via 3D printing for UPM,UPM of 3D-printed components for real-world applications,and post-machining of 3D-printed components.Finally,future prospects for integrating the two advanced manufacturing technologies into potential industries are discussed.This study concludes that UPM is a promising technology for 3D-printed components,exhibiting the potential to improve the functionality and performance of 3D-printed products in various applications.It also discusses how UPM and 3D printing can complement each other.展开更多
The demand for optical glass has been rapidly increasing in various industries,where an ultra-smooth surface and form accuracy are critical for the functional elements of the applications.To meet the high surface-qual...The demand for optical glass has been rapidly increasing in various industries,where an ultra-smooth surface and form accuracy are critical for the functional elements of the applications.To meet the high surface-quality requirements,a polishing process is usually adopted to finish the optical glass surface to ensure an ultra-smooth surface and eliminate sub-surface damage.However,current ultra-precision polishing processes normally polish workpieces individually,leading to a low production efficiency and high polishing costs.Current mass-finishing methods cannot be used for optical glasses.Therefore,magnetic-field-assisted batch polishing(MABP)was proposed in this study to overcome this research gap and provide an efficient and cost-effective method for industrial use.A series of polishing experiments were conducted on typical optical components under different polishing parameters to evaluate the polishing performance of MABP on optical glasses.The results demonstrated that MABP is an efficient method to simultaneously polish multiple lenses while achieving a surface roughness,indicated by the arithmetic mean height(Sa),of 0.7 nm and maintained a sub-micrometer surface form for all the workpieces.In addition,no apparent sub-surface damage was observed,indicating the significant potential for the high-quality rapid polishing of optical glasses.The proposed method is highly competitive compared to the current optical polishing methods,which has the potential to revolutionize the polishing process for small optics.展开更多
基金Supported by Research Grants Council of the Government of the Hong Kong Special Administrative Region of China (Grant No.15203620)Research and Innovation Office of The Hong Kong Polytechnic University of China (Grant Nos.BBXN,1-W308)+1 种基金Research Studentships (Grant No.RH3Y)State Key Laboratory of Mechanical System and Vibration of China (Grant No.MSV202315)。
文摘Ceramic cutting inserts are a type of cutting tool commonly used in high-speed metal cutting applications.However,the wear of these inserts caused by friction between the workpiece and cutting inserts limits their overall effectiveness.In order to improve the tool life and reduce wear,this study introduces an emerging method called magnetic field-assisted batch polishing(MABP)for simultaneously polishing multiple ceramic cutting inserts.Several polishing experiments were conducted under different conditions,and the wear characteristics were clarified by cutting S136H steel.The results showed that after 15 min of polishing,the surface roughness at the flank face,edge,and nose of the inserts was reduced to below 2.5 nm,6.25 nm,and 45.8 nm,respectively.Furthermore,the nose radii of the inserts did not change significantly,and there were no significant changes in the weight percentage of elements before and after polishing.Additionally,the tool life of the batch polished inserts was found to be up to 1.75 times longer than that of unpolished inserts.These findings suggest that the MABP method is an effective way to mass polish ceramic cutting inserts,resulting in significantly reduced tool wear.Furthermore,this novel method offers new possibilities for polishing other tools.
基金supported by National Natural Science Foundation of China (Grant No. 51005207)Open Foundation of the Mechanical Engineering in Zhejiang University of Technology, China (Grant No.2009EP004)Foundation of Zhejiang Provincial Education Department of China (Grant No. Y200908129)
文摘The research on the parameters optimization for gasbag polishing machine tools, mainly aims at a better kinematics performance and a design scheme. Serial structural arm is mostly employed in gasbag polishing machine tools at present, but it is disadvantaged by its complexity, big inertia, and so on. In the multi-objective parameters optimization, it is very difficult to select good parameters to achieve excellent performance of the mechanism. In this paper, a statistics parameters optimization method based on index atlases is presented for a novel 5-DOF gasbag polishing machine tool. In the position analyses, the structure and workspace for a novel 5-DOF gasbag polishing machine tool is developed, where the gasbag polishing machine tool is advantaged by its simple structure, lower inertia and bigger workspace. In the kinematics analyses, several kinematics performance evaluation indices of the machine tool are proposed and discussed, and the global kinematics performance evaluation atlases are given. In the parameters optimization process, considering the assembly technique, a design scheme of the 5-DOF gasbag polishing machine tool is given to own better kinematics performance based on the proposed statistics parameters optimization method, and the global linear isotropic performance index is 0.5, the global rotational isotropic performance index is 0.5, the global linear velocity transmission performance index is 1.012 3 m/s in the case of unit input matrix, the global rotational velocity transmission performance index is 0.102 7 rad/s in the case of unit input matrix, and the workspace volume is 1. The proposed research provides the basis for applications of the novel 5-DOF gasbag polishing machine tool, which can be applied to the modern industrial fields requiring machines with lower inertia, better kinematics transmission performance and better technological efficiency.
基金Supported by Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ16E050012)National Natural Science Foundation of China(Grant Nos.51705462 and 51275115)International Science and Technology Cooperation Program of China(Grant No.2015DFA70630)
文摘Ultra-precision machine tool is the most important physical tool to machining the workpiece with the frequency domain error requirement, in the design process of which the dynamic accuracy design(DAD) is indispensable and the related research is rarely available. In light of above reasons, a DAD method of ultra-precision machine tool is proposed in this paper, which is based on the frequency domain error allocation.The basic procedure and enabling knowledge of the DAD method is introduced. The application case of DAD method in the ultra-precision flycutting machine tool for KDP crystal machining is described to show the procedure detailedly. In this case, the KDP workpiece surface has the requirements in four different spatial frequency bands, and the emphasis for this study is put on the middle-frequency band with the PSD specifications. The results of the application case basically show the feasibility of the proposed DAD method. The DAD method of ultra-precision machine tool can effectively minimize the technical risk and improve the machining reliability of the designed machine tool. This paper will play an important role in the design and manufacture of new ultra-precision machine tool.
文摘The dynamic performances of an ultra-precision fly cutting machine tool(UFCMT)has a dramatic impact on the quality of ultra-precision machining.In this study,the dynamic model of an UFCMT was established based on the transfer matrix method for multibody systems.In particular,the large-span scale flow field mesh model was created;and the variation in linear and angular stiffness of journal and thrust bearings with respect to film thickness was investigated by adopting the dynamic mesh technique.The dynamic model was proven to be valid by comparing the dynamic characteristics of the machine tool obtained by numerical simulation with the experimental results.In addition,the power spectrum density estimation method was adopted to simulate the statistical ambient vibration excitation by processing the ambient vibration signal measured over a long period of time.Applying it to the dynamic model,the dynamic response of the tool tip under ambient vibration was investigated.The results elucidated that the tool tip response was significantly affected by ambient vibration,and the isolation foundation had a good effect on vibration isolation.
文摘In order to minimize vibration and improve rotary precision of spindle, we apply active vibration control technique to ultra-precision turning machine based on the analysis of vibration characteristic of aerostatic bearing spindle. Using aerostatic bearing itself as actuator, the vibration of spindle is controlled by adjusting admission pressure respectively and by changing pressure distribution in the bearing. The experiments and simulations prove that this method can minimize the vibration of spindle effectively.
基金This project is supported by Foundation of Xiamen Univer sity of China for Scholars Return from Abroad (No.08003).
文摘A new idea for designing wheel patterns is presented so as to solve theproblems about machining accuracy of workpiece and wear of honing wheel in ultra-precision planehoning. The influence factors on motion principle and pattern structures are analyzed andoptimization machining parameters are obtained. By calculating effective cutting length on thesurface of workpiece cut by wheel's abrasive and the orbit of one point on the surface of workpiececontacting with wheel, the wear coefficient of different kinds of wheels and accuracy coefficient ofworkpiece machined by corresponding wheels are obtained. Furthermore, the simulation results showthat the optimal pattern structure of wheel turns out to have lower wheel wear and higher machiningaccuracy.
基金supported by the NSF under grant No. CMMI-1844821。
文摘In this paper, the modified slip/fracture activation model has been used in order to understand the mechanism of ductile-brittle transition on the R-plane of sapphire during ultra-precision machining by reflecting direction of resultant force. Anisotropic characteristics of crack morphology and ductility of machining depending on cutting direction were explained in detail with modified fracture cleavage and plastic deformation parameters. Through the analysis, it was concluded that crack morphologies were mainly determined by the interaction of multiple fracture systems activated while, critical depth of cut was determined by the dominant plastic deformation parameter. In addition to this, by using proportionality relationship between magnitude of resultant force and depth of cut in the ductile region, an empirical model for critical depth of cut was developed.
基金the Research Committee of The Hong Kong Polytechnic University and the Innovation Technology Commission of The Hong Kong SAR Government for their financial support of the Hong Kong Partner State Key Laboratory of Ultra-Precision Machining Technology
文摘There have been various theoretical attempts by researchers worldwide to link up different scales of plasticity studies from the nano-, micro- and macro-scale of observation, based on molecular dynamics, crystal plasticity and continuum mechanics. Very few attempts, however, have been reported in ultra-precision machining studies. A mesoplasticity approach advocated by Lee and Yang is adopted by the authors and is successfully applied to studies of the micro-cutting mechanisms in ultra-precision machining. Traditionally, the shear angle in metal cutting, as well as the cutting force variation, can only be determined from cutting tests. In the pioneering work of the authors, the use of mesoplasticity theory enables prediction of the fluctuation of the shear angle and micro-cutting force, shear band formation, chip morphology in diamond turning and size effect in nano-indentation. These findings are verified by experiments. The mesoplasticity formulation opens up a new direction of studies to enable how the plastic behaviour of materials and their constitutive representations in deformation processing, such as machining can be predicted, assessed and deduced from the basic properties of the materials measurable at the microscale.
文摘During ultra-precision machining, machining accuracy is determined by many factors and interaction of these factors. Error sources are systematically analyzed for ultra-precision machine tools, and the influencing degree of each factor is presented to provide orientation for error reduction and error compensation.
文摘Digital manufacturing technology can be used in optical field to solve many problems caused by traditional machining. According to the characters of digital manufacturing and the practical applications of ultra-precision machining,the process of digital ultra-precision machining and its technical contents were presented in this paper. In the conclusions,it was stated that the digitalization of ultra-precision machining will be an economical and efficient way for the production of new sorts of optical workpieces.
基金supported by the National Natural Science Foundation of China under Grant No.61434006
文摘This paper presents a terahertz(THz)band-pass filter using ultra-precision machining technology based on Chebyshev filter prototype.This iris inductive window coupled waveguide filter was designed by using 8 resonant cavities with a center frequency of 345 GHz and a 7% bandwidth.The final design fulfills the desired specifications and presents the minimum insertion loss of 1.55 d B and the return loss of less than 15 d B at 345 GHz.The stop-band rejection is50 d B off the center frequency about 30 GHz,which means it has a good performance of high stop-band suppression.Compared with the recent development of THz filters,this filter possesses the characteristic of simple structure and is easy to machining.
基金the support from the National Key Research and Development Program of China[2018YFA0703400].
文摘The infrared conformal window is one of the most critical components in aircraft.Conformal windows with high performance bring low aberrations,high aerodynamic performance,reliability in extreme working environments,and added value for aircraft.Through the past decades,remarkable advances have been achieved in manufacturing technologies for conformal windows,where the machining accuracy approaches the nanometer level,and the surface form becomes more complex.These advances are critical to aircraft development,and these manufacturing technologies also have significant reference values for other directions of the ultra-precision machining field.In this review,the infrared materials suitable for manufacturing conformal windows are introduced and compared with insights into their performances.The remarkable advances and concrete work accomplished by researchers are reviewed.The challenges in manufacturing conformal windows that should be faced in the future are discussed.
基金supported by the State Key Laboratories in Hong Kong,China,from the Innovation and Technology Commission(project code:BBR3)of the Government of the Hong Kong Special Administrative Region,Chinathe Research Office(project codes:BBXM and BBX)of The Hong Kong Polytechnic University,China+1 种基金the Project of Strategic Importance(project codes:1-ZE0G and SBBD)of The Hong Kong Polytechnic University,Chinaand the Research Committee(project code:RMAC)of The Hong Kong Polytechnic University,China。
文摘Additive manufacturing,particularly 3D printing,has revolutionized the manufacturing industry by allowing the production of complex and intricate parts at a lower cost and with greater efficiency.However,3D-printed parts frequently require post-processing or integration with other machining technologies to achieve the desired surface finish,accuracy,and mechanical properties.Ultra-precision machining(UPM)is a potential machining technology that addresses these challenges by enabling high surface quality,accuracy,and repeatability in 3D-printed components.This study provides an overview of the current state of UPM for 3D printing,including the current UPM and 3D printing stages,and the application of UPM to 3D printing.Following the presentation of current stage perspectives,this study presents a detailed discussion of the benefits of combining UPM with 3D printing and the opportunities for leveraging UPM on 3D printing or supporting each other.In particular,future opportunities focus on cutting tools manufactured via 3D printing for UPM,UPM of 3D-printed components for real-world applications,and post-machining of 3D-printed components.Finally,future prospects for integrating the two advanced manufacturing technologies into potential industries are discussed.This study concludes that UPM is a promising technology for 3D-printed components,exhibiting the potential to improve the functionality and performance of 3D-printed products in various applications.It also discusses how UPM and 3D printing can complement each other.
基金study was mainly supported by grants from the Research Grants Council of the Government of the Hong Kong Special Administrative Region,China(Project No.15203620)the Research and Innovation Office of The Hong Kong Polytechnic University(Project codes:BBXN and BBX5)research studentships(project code:RH3Y).The authors would also like to express their sincere thanks for the funding support from the State Key Laboratories in Hong Kong from the Innovation and Technology Commission(ITC)of the Government of the Hong Kong Special Administrative Region(HKSAR),China.
文摘The demand for optical glass has been rapidly increasing in various industries,where an ultra-smooth surface and form accuracy are critical for the functional elements of the applications.To meet the high surface-quality requirements,a polishing process is usually adopted to finish the optical glass surface to ensure an ultra-smooth surface and eliminate sub-surface damage.However,current ultra-precision polishing processes normally polish workpieces individually,leading to a low production efficiency and high polishing costs.Current mass-finishing methods cannot be used for optical glasses.Therefore,magnetic-field-assisted batch polishing(MABP)was proposed in this study to overcome this research gap and provide an efficient and cost-effective method for industrial use.A series of polishing experiments were conducted on typical optical components under different polishing parameters to evaluate the polishing performance of MABP on optical glasses.The results demonstrated that MABP is an efficient method to simultaneously polish multiple lenses while achieving a surface roughness,indicated by the arithmetic mean height(Sa),of 0.7 nm and maintained a sub-micrometer surface form for all the workpieces.In addition,no apparent sub-surface damage was observed,indicating the significant potential for the high-quality rapid polishing of optical glasses.The proposed method is highly competitive compared to the current optical polishing methods,which has the potential to revolutionize the polishing process for small optics.