Li2O-Al2O3-SiO2 glass prepared from traditional melting and cooling process was investigated.The surface characteristic of LAS glass was studied by simulating tin bath with different temperature and time,and the effec...Li2O-Al2O3-SiO2 glass prepared from traditional melting and cooling process was investigated.The surface characteristic of LAS glass was studied by simulating tin bath with different temperature and time,and the effect of surface tension/viscosity ratio on flatting time was analyzed.The results demonstrated that LAS glass can polish effectively when polishing at 1 300 ℃ for 8 min,and the optimum flatting and polishing temperature was 1 250-1 300 ℃.展开更多
The forming process of the flexible ultrathin glasses(UTG)prepared by the redrawing method was numerically simulated using ANSYS Polyflow software.In the forming process by the redrawing method,temperature,viscosity,t...The forming process of the flexible ultrathin glasses(UTG)prepared by the redrawing method was numerically simulated using ANSYS Polyflow software.In the forming process by the redrawing method,temperature,viscosity,transverse and longitudinal velocity distribution of the glasses with different compositions were studied.Furthermore,the influence of these factors on the width and thickness of the flexible glass plate was investigated.It is found that the internal and external heat exchange of glass has a dominant influence on the viscosity variation during the UTG forming process,which is inconsistent with the general viscosity-temperature dependence.The glass that first reaches the lower limit of forming viscosity can significantly resist the shrinking effect caused by surface tension,making the glass wider during the forming.If the original glass width remains unchanged,the glass thickness or feeding speed is reduced,wider and thinner flexible glasses can be produced.展开更多
Glass manufacturing is an energy-intensive process with high demands on product quality. The wide usage of glass products results in a high end-product diversity. In the past, many models have been developed...Glass manufacturing is an energy-intensive process with high demands on product quality. The wide usage of glass products results in a high end-product diversity. In the past, many models have been developed to optimize specific process steps, such as glass melting or glass forming. This approach presents a tool for the modeling of the entire glass manufacturing process for container glass, flat glass, and glass fibers. The tool considers detailed bottom-up energy and material balance in each step of the processing route with the corresponding costs and CO<sub>2</sub> emissions. Subsequently, it provides the possibility to quantify optimization scenarios in the entire glass manufacturing process in terms of energy, material and cost flow efficiency.展开更多
基金Funded partly by the National Key Technology R&D Program in the 11th Five Year Plan of China(No. 2006BAJ02B00)Natural Science Foundation of Hubei Province (No.2008CDA037)
文摘Li2O-Al2O3-SiO2 glass prepared from traditional melting and cooling process was investigated.The surface characteristic of LAS glass was studied by simulating tin bath with different temperature and time,and the effect of surface tension/viscosity ratio on flatting time was analyzed.The results demonstrated that LAS glass can polish effectively when polishing at 1 300 ℃ for 8 min,and the optimum flatting and polishing temperature was 1 250-1 300 ℃.
基金the National Key Research and Development Program of China(No.2022YFB3603300)。
文摘The forming process of the flexible ultrathin glasses(UTG)prepared by the redrawing method was numerically simulated using ANSYS Polyflow software.In the forming process by the redrawing method,temperature,viscosity,transverse and longitudinal velocity distribution of the glasses with different compositions were studied.Furthermore,the influence of these factors on the width and thickness of the flexible glass plate was investigated.It is found that the internal and external heat exchange of glass has a dominant influence on the viscosity variation during the UTG forming process,which is inconsistent with the general viscosity-temperature dependence.The glass that first reaches the lower limit of forming viscosity can significantly resist the shrinking effect caused by surface tension,making the glass wider during the forming.If the original glass width remains unchanged,the glass thickness or feeding speed is reduced,wider and thinner flexible glasses can be produced.
文摘Glass manufacturing is an energy-intensive process with high demands on product quality. The wide usage of glass products results in a high end-product diversity. In the past, many models have been developed to optimize specific process steps, such as glass melting or glass forming. This approach presents a tool for the modeling of the entire glass manufacturing process for container glass, flat glass, and glass fibers. The tool considers detailed bottom-up energy and material balance in each step of the processing route with the corresponding costs and CO<sub>2</sub> emissions. Subsequently, it provides the possibility to quantify optimization scenarios in the entire glass manufacturing process in terms of energy, material and cost flow efficiency.