Metamaterials(MTM)can enhance the properties of microwaves and also exceed some limitations of devices used in technical practice.Note that the antenna is the element for realizing a microwave imaging(MWI)system since...Metamaterials(MTM)can enhance the properties of microwaves and also exceed some limitations of devices used in technical practice.Note that the antenna is the element for realizing a microwave imaging(MWI)system since it is where signal transmission and absorption occur.Ultra-Wideband(UWB)antenna superstrates with MTM elements to ensure the signal transmitted from the antenna reaches the tumor and is absorbed by the same antenna.The lack of conventional head imaging techniques,for instance,Magnetic Resonance Imaging(MRI)and Computerized Tomography(CT)-scan,has been demonstrated in the paper focusing on the point of failure of these techniques for prompt diagnosis and portable systems.Furthermore,the importance ofMWIhas been addressed elaborately to portray its effectiveness and aptness for a primary tumor diagnosis.Other than that,MTM element designs have been discussed thoroughly based on their performances towards the contributions to the better image resolution of MWI with detailed reasonings.This paper proposes the novel design of a Zeroindex Split RingResonator(SRR)MTMelement superstrate with a UWB antenna implemented in MWI systems for detecting tumor.The novel design of the MTM enables the realization of a high gain of a superstrate UWB antenna with the highest gain of 5.70 dB.Besides that,the MTM imitates the conduct of the zeroreflection phase on the resonance frequency,which does not exist.An antenna with an MTM unit is of a 7×4 and 10×5 Zero-index SRR MTM element that acts as a superstrate plane to the antenna.Apart from that,Rogers(RT5880)substrate material is employed to fabricate the designed MTM unit cell,with the following characteristics:0.51mm thickness,the loss tangent of 0.02,as well as the relative permittivity of 2.2,with Computer Simulation Technology(CST)performing the simulation and design.Both MTM unit cells of 7×4 and 10×5 attained 0°with respect to the reflection phase at the 2.70 GHz frequency band.The first design,MTM Antenna Design 1,consists of a 7×4 MTM unit cell that observed a rise of 5.70 dB with a return loss(S11)−20.007 dB at 2.70 GHz frequency.The second design,MTM Antenna Design 2,consists of 10×5 MTM unit cells that recorded a gain of 5.66 dB,having the return loss(S11)−19.734 dB at 2.70 GHz frequency.Comparing these two MTM elements superstrates with the antenna,one can notice that the 7×4 MTM element shape has a low number of the unit cell with high gain and is a better choice than the 10×5 MTM element in realizing MTM element superstrates antenna for MWI.展开更多
This study designs a microstrip patch antenna with an inverted T-type notch in the partial ground to detect tumorcells inside the human breast.The size of the current antenna is small enough(18mm×21mm×1.6mm)...This study designs a microstrip patch antenna with an inverted T-type notch in the partial ground to detect tumorcells inside the human breast.The size of the current antenna is small enough(18mm×21mm×1.6mm)todistribute around the breast phantom.The operating frequency has been observed from6–14GHzwith a minimumreturn loss of−61.18 dB and themaximumgain of current proposed antenna is 5.8 dBiwhich is flexiblewith respectto the size of antenna.After the distribution of eight antennas around the breast phantom,the return loss curveswere observed in the presence and absence of tumor cells inside the breast phantom,and these observations showa sharp difference between the presence and absence of tumor cells.The simulated results show that this proposedantenna is suitable for early detection of cancerous cells inside the breast.展开更多
This paper reviews three complex interactions between microwave energy and microorganisms (bacteria, fungi, and viruses). The first interaction comprises the detection of viruses within human blood using a 50-Ohm tran...This paper reviews three complex interactions between microwave energy and microorganisms (bacteria, fungi, and viruses). The first interaction comprises the detection of viruses within human blood using a 50-Ohm transmission-line vector net-analyzer (typically 0 to 10 dBm @ 2 to 8.5 GHz) where the blood is placed within a test chamber that acts as a non-50-Ohm discontinuity. The second interaction employs 1 to 6.5 W @ 8 to 26 GHz for microwave feed-horn illumination to inactivate microorganisms at an applied power density of 10 to 100 mW<sup>-2</sup>. The third interaction is within multi-mode microwave ovens, where microorganism cell membrane disruption occurs at a few 100 s of W @ 2.45 GHz and microorganism inactivation between 300 to 1800 W @ 2.45 GHz. Within the first microwave interaction, blood relaxation processes are examined. Whereas in the latter two microwave interactions, the following disruption, and inactivation mechanisms are examined: chemical cellular lysis and, microwave resonant absorption causing cell wall rupture, and thermodynamic analysis in terms of process energy budget and suspension energy density. In addition, oven-specific parameters are discussed.展开更多
First,this article reviews the background of microwave imaging for early breast cancer detection,with a focus on active methods.Then active approaches,namely microwave tomography and radar-based microwave imaging,to m...First,this article reviews the background of microwave imaging for early breast cancer detection,with a focus on active methods.Then active approaches,namely microwave tomography and radar-based microwave imaging,to microwave breast cancer detection are overviewed briefly,where there are recent developments in imaging algorithms as well as antennas,models,phantom and experimental systems.Lastly,we give concluding remarks and future research.In a word,the main objective of this article is to provide an overview of the principles,development,and current research status of these approaches.展开更多
Future wireless communication systemembraces physical-layer signal detection with highsensitivity, especially in the microwave photon level.Currently, the receiver primarily adopts the signal detection based on semi-c...Future wireless communication systemembraces physical-layer signal detection with highsensitivity, especially in the microwave photon level.Currently, the receiver primarily adopts the signal detection based on semi-conductor devices for signal detection, while this paper introduces high-sensitivityphoton-level microwave detection based on superconducting structure. We first overview existing works onthe photon-level communication in the optical spectrum as well as the microwave photon-level sensingbased on superconducting structure in both theoreticaland experimental perspectives, including microwavedetection circuit model based on Josephson junction,microwave photon counter based on Josephson junction, and two reconstruction approaches under background noise. In addition, we characterize channelmodeling based on two different microwave photondetection approaches, including the absorption barrierand the dual-path Handury Brown-Twiss (HBT) experiments, and predict the corresponding achievablerates. According to the performance prediction, it isseen that the microwave photon-level signal detectioncan increase the receiver sensitivity compared withthe state-of-the-art standardized communication system with waveform signal reception, with gain over 10dB.展开更多
In this paper, a collection of three-dimensional(3D)numerical breast models are developed based on clinical magnetic resonance images(MRIs). A hybrid contour detection method is used to create the contour, and the int...In this paper, a collection of three-dimensional(3D)numerical breast models are developed based on clinical magnetic resonance images(MRIs). A hybrid contour detection method is used to create the contour, and the internal space is filled with different breast tissues, with each corresponding to a specified interval of MRI pixel intensity. The developed models anatomically describe the complex tissue structure and dielectric properties in breasts. Besides, they are compatible with finite-difference-time-domain(FDTD)grid cells. Convolutional perfect matched layer(CPML)is applied in conjunction with FDTD to simulate the open boundary outside the model. In the test phase, microwave breast cancer detection simulations are performed in four models with varying radiographic densities. Then, confocal algorithm is utilized to reconstruct the tumor images. Imaging results show that the tumor voxels can be recognized in every case, with 2 mm location error in two low density cases and 7 mm─8 mm location errors in two high density cases, demonstrating that the MRI-derived models can characterize the individual difference between patients' breasts.展开更多
In this paper, we conduct research on the import and export of iron ore and harmful element detection method based on microwave digestion inductively coupled plasma mass spectrometry approach. Our country gradually in...In this paper, we conduct research on the import and export of iron ore and harmful element detection method based on microwave digestion inductively coupled plasma mass spectrometry approach. Our country gradually increased demand for iron ore, iron ore trade, in order to ensure that the quality of the iron ore and taste which must be tested for total iron content. At the same time it also increased the demand for iron ore, although China' s iron ore production has been greatly improved. Our proposed approach optimizes the traditional detection method which will be meaningful.展开更多
Precipitation detection is an essential step in radiance assimilation because the uncertainties in precipitation would affect the radiative transfer calculation and observation errors.The traditional precipitation det...Precipitation detection is an essential step in radiance assimilation because the uncertainties in precipitation would affect the radiative transfer calculation and observation errors.The traditional precipitation detection method for microwave only detects clouds and precipitation horizontally,without considering the three-dimensional distribution of clouds.Extending precipitation detection from 2D to 3D is expected to bring more useful information to the data assimilation without using the all-sky approach.In this study,the 3D precipitation detection method is adopted to assimilate Microwave Temperature Sounder-2(MWTS-Ⅱ)onboard the Fengyun-3D,which can dynamically detect the channels above precipitating clouds by considering the near-real-time cloud parameters.Cycling data assimilation and forecasting experiments for Typhoons Lekima(2019)and Mitag(2019)are carried out.Compared with the control experiment,the quantity of assimilated data with the 3D precipitation detection increases by approximately 23%.The quality of the additional MWTS-Ⅱradiance data is close to the clear-sky data.The case studies show that the average root-mean-square errors(RMSE)of prognostic variables are reduced by 1.7%in the upper troposphere,leading to an average reduction of4.53%in typhoon track forecasts.The detailed diagnoses of Typhoon Lekima(2019)further show that the additional MWTS-Ⅱradiances brought by the 3D precipitation detection facilitate portraying a more reasonable circulation situation,thus providing more precise structures.This paper preliminarily proves that 3D precipitation detection has potential added value for increasing satellite data utilization and improving typhoon forecasts.展开更多
The experimental study of ultra-wideband (UWB) technology, its generation and on-line measurement are presented. An experimental repetitive UWB system is designed, manufactured, and tested. High-pressure spark gap swi...The experimental study of ultra-wideband (UWB) technology, its generation and on-line measurement are presented. An experimental repetitive UWB system is designed, manufactured, and tested. High-pressure spark gap switch and its components, as well as oil spark gap switch are studied experimentally on the system. Experimental results indicate that the system operates at a 200 pps repetitive rate with a stable performance. 100 MW peak power UWB pulses are obtained on the system. Fast-time response capacitive divider is designed and fabricated, allowing for an accurate measurement of the high power UWB signal. The main issues related to the design of the switch and the UWB signal online measurement are discussed.展开更多
Results of experimental investigation of detection (rectification) of high power X-band microwave signal in diodes of various design (semiconductor p-n-junction, point-contact, Schottky, Metal-Isolator-Metal—MIM) are...Results of experimental investigation of detection (rectification) of high power X-band microwave signal in diodes of various design (semiconductor p-n-junction, point-contact, Schottky, Metal-Isolator-Metal—MIM) are reported. The maximum of the detected direct voltage V vs. power P of microwave signal and subsequent polarity reversal, previously found in MIM diodes in the optical and microwave bands, have found to be characteristic of all investigated diodes as well. After the reversal of polarity, this dependence comes linear, and the sign of the voltage corresponds to thermoEMF. In some diodes, the hysteresis on V(P) was observed. All 5 types of V(P) of MIM diodes (have made from different pairs of metals), reported earlier, were reproduced on same p-n-junction diode by variable external DC bias. These results joined with abnormal frequency cutoff forced to suggest that there is an unknown mechanism for direct flow of charge carriers (and for generate direct current) in the high-frequency electrical field, which differs from the conventional rectification.展开更多
The detection performance is evaluated for our proposed analog multiuser receiver in Ultra-WideBand (UWB) transmitted-reference system. In the presence of dense multipath and multi-access signals,the performance analy...The detection performance is evaluated for our proposed analog multiuser receiver in Ultra-WideBand (UWB) transmitted-reference system. In the presence of dense multipath and multi-access signals,the performance analysis is difficult due to the complicated waveform of received impulse. We develop an approach to analyze the steady-state Signal-to-Interference-plus-Noise (SINR) of the detector output. The multipath-spread impulse is fitted to an exponentially decaying profile in the analysis. A closed-form expression of steady-state SINR is further deduced for the proposed Least Minimum Square (LMS) detector. The analysis is validated by simulations in Line-Of-Sight (LOS) and Non-Line-Of-Sight (NLOS) channel respectively. Based on the theoretical results,the multipath delay spread is employed to determine the optimal width of the integration window of the detector.展开更多
To obtain some prior knowledge of breast cancer detection by microwave imaging, we have measured and analyzed the complex permittivity of tissues extracted from over 140 breast cancer surgeries. The relative permittiv...To obtain some prior knowledge of breast cancer detection by microwave imaging, we have measured and analyzed the complex permittivity of tissues extracted from over 140 breast cancer surgeries. The relative permittivity and conductivity of tumor at 1.6 GHz were 17.5% and 16.2% higher than those of mammary gland tissue, respectively. In invasive ductal carcinoma of scirrhous type, 8 out of 64 had higher relative permittivity and conductivity of mammary gland than those of tumor. However, when evaluated by the Debye parameter considering the frequency dependence of the tissue, it is rare that </span><i><span style="font-family:Verdana;">ε</span></i><sub><span style="font-family:Verdana;">∞</span></sub><span style="font-family:Verdana;"> and Δ</span><i><span style="font-family:Verdana;">ε</span></i><span style="font-family:Verdana;"> of cancer are simultaneously lower than those of mammary gland. The relative permittivity and conductivity of fibroadenoma are almost the same as those of mammary glands. The relative permittivity and conductivity of each tissue showed strong linearity. Microwave imaging requires accurate reconstruction of </span><i><span style="font-family:Verdana;">ε</span></i><sub><span style="font-family:Verdana;">∞</span></sub><span style="font-family:Verdana;"> and Δ</span><i><span style="font-family:Verdana;">ε</span></i><span style="font-family:Verdana;"> to distinguish cancer from normal tissue.展开更多
A novel efficient circuit for Ultra-WideBand(UWB) balanced sub-nanosecond monocycle pulse generation is presented.The pulse generator employs wideband bipolar transistor,step recovery diodes,Schottky diodes,and simple...A novel efficient circuit for Ultra-WideBand(UWB) balanced sub-nanosecond monocycle pulse generation is presented.The pulse generator employs wideband bipolar transistor,step recovery diodes,Schottky diodes,and simple charging and discharging circuitry.Simple transient analysis and design of the circuit are presented along with their operating principle.The pulse generator produces truly balanced monocycle pulse with 500 ps pulse-width and 800 mV peak voltage.The generated monocycle pulse also has very symmetrical positive and negative portions and low ringing level.The presented pulse generator can be used as both a transmitter feeding UWB balanced antennas without broadband baluns and a balanced switching pulse generator that used in UWB receiver.展开更多
Microwave-assisted extraction was optimized with response surface methodology for HPLC-fluorescence determination of puerarin and daidzein in Radix Puerariae thomsonii.The optimized extraction procedure was achieved b...Microwave-assisted extraction was optimized with response surface methodology for HPLC-fluorescence determination of puerarin and daidzein in Radix Puerariae thomsonii.The optimized extraction procedure was achieved by soaking the sample with 70% methanol(1∶15,v/v)for 30 min,and then microwave irradiation for 11 min at a power of 600 W.Coupling the extraction process with HPLC-fluorescence presented good recovery,satisfactory precision,and good linear relation.Compared with a method from the Chinese Pharmacopoeia,the proposed method enables higher extraction efficiency and more accurate analytical results.It can be of potential value in quality assessment of Radix Puerariae thomsonii medicinal materials.展开更多
This paper presents the design and analysis of antipodal Vivaldi antennas(AVAs)for breast cancer detection.In order to enhance the antenna gain,different techniques such as using the uniform and non-uniform corrugatio...This paper presents the design and analysis of antipodal Vivaldi antennas(AVAs)for breast cancer detection.In order to enhance the antenna gain,different techniques such as using the uniform and non-uniform corrugation,expanding the dielectric substrate and adding the parasitic patch are applied to original AVA.The design procedure of two developed AVA structures i.e.,AVA with non-uniform corrugation and AVA with parasitic patch are presented.The proposed AVAs are designed on inexpensive FR4 substrate.The AVA with non-uniform corrugation has compact dimension of 50×50 mm2 or 0.28λL×0.28λL,whereλL is wavelength of the lowest operating frequency.The antenna can operate within the frequency range from 1.63 GHz to over 8 GHz.For the AVA with parasitic patch and uniform corrugation,the overall size of antenna is 50×86 mm2 or 0.24λL×0.41λL.It can operate within the frequency range from 1.4 GHz to over 8 GHz.The maximum gain for AVA with non-uniform corrugation and AVA with parasitic patch and uniform corrugation are 9.03 and 11.31 dBi,respectively.The corrugation profile and parasitic patch of the proposed antenna are optimized to achieve the desired properties for breast cancer detection.In addition,the proposed AVAs are measured with breast phantom to detect cancerous cell inside the breast and the performance in detecting cancerous cell are discussed.The measured result can confirm that the proposed AVAs can detect unwanted cell inside the breast while maintaining the compact size,simple structure and low complexity in design.展开更多
To solve the problem that the conventional detections in DS-CDMA suffer from high complexity and poor robustness for the time-hopping pulse signals, the received pulse signals were remodeled, and a mulfipath-free dete...To solve the problem that the conventional detections in DS-CDMA suffer from high complexity and poor robustness for the time-hopping pulse signals, the received pulse signals were remodeled, and a mulfipath-free detection scheme, which provides a simple approach to select samples of received signals, was introduced. By this scheme, the subsequent multiuser detection (MUD) would get rid of the mis- match due to the correlative multipath signal in IR-UWB. In addition, a computationally efficient recur-sive least squares (RLS) type algorithm based on least mean fourth (LMF) criterion is derived to suppress multi-access interference. The proposed multiuser detection algorithm performs well at low complexity, even in dense muhipath environment.展开更多
In this work, experiment investigations and simulation studies of a waveguide-based microwave plasma source operated at 2.45 GHz in atmospheric pressure helium gas are presented. The plasma source has been designed in...In this work, experiment investigations and simulation studies of a waveguide-based microwave plasma source operated at 2.45 GHz in atmospheric pressure helium gas are presented. The plasma source has been designed in conjunction with a gas spectrograph as a speciation analysis tool. Emitted He spectra are observed for gas flow rates between (0.2-1) L/min and microwave power in the range (15-150) W. The results obtained demonstrate maximum excitation temperature of about 3800 K and gas temperature of about 2000 K. Mixtures containing small amounts of mercury atoms are considered and the resonant emission of Hg atoms at 253.56 nm is detected. The spectroscopic measurements are completed with a collisional radiative model delivering the electron density and temperature, the amplitude of the electric microwave field, and the population of the excited atomic states for a given absorbed power and gas temperature, The electromagnetic field distribution in the plasma source is obtained by solving Maxwell's equations. Electric field strength of several 10^5 V/m is obtained that agrees well with the results of the collisional radiative model. The calculated and measured line intensity ratios of He spectral lines agree within 300/0-40%.展开更多
In view of the inaccuracy of the estimated symbols on the edge of the observation window, a decision-feedback subset aided multiple-symbol differential detection(MSDD) framework, dubbed DF-S-MSDD, is proposed in ultra...In view of the inaccuracy of the estimated symbols on the edge of the observation window, a decision-feedback subset aided multiple-symbol differential detection(MSDD) framework, dubbed DF-S-MSDD, is proposed in ultra-wideband impulse radio(UWB-IR) system with differential space-time block-code(DSTBC) modulation. Specifically, motivated by the decision-feedback aided MSDD(DF-MSDD), a subset of the decision-feedback symbols is selected, and the optimal symbols are preserved, and then all the remaining symbols are optimized. Furthermore, the simulations validate that the proposed DF-S-MSDD provides solid bit error-rate performance with a low complexity in UWB-IR system with DSTBC modulation.展开更多
We present a robust and computationally efficient image reconstruction and object detection algorithm suitable for a microwave holographic vision system with several microwave sensors and a single emission source to d...We present a robust and computationally efficient image reconstruction and object detection algorithm suitable for a microwave holographic vision system with several microwave sensors and a single emission source to detect the presence and the nature of road obstacles impeding driving in the near vehicle zone. The holographic visualization technique allows reconstructing the spatial microwave scattering density in non-optical setting, detecting by lattice of sensors both amplitude and phase of a reflected signal We discuss versions of an algorithm, determine and analyze its resolution limits for various distances with different number of sensors for a one-dimensional test problem of detecting two walls (or posts) separated by a gap at a fixed distance. The interval between sensors needed for a reliable reconstruction equals about one Fresnel zone width. We show that detection distances and spatial resolution achieved (better than 20 cm on distances up to 4.5 m) were sufficient for near-vehicle object detection purposes.展开更多
The design and development of a cryogenic Ultra-Low-Noise Signal Amplification (ULNA) and detection system for spectroscopy of ultra-cold systems are reported here for the operation in the 0.5 - 4 GHz spectrum of freq...The design and development of a cryogenic Ultra-Low-Noise Signal Amplification (ULNA) and detection system for spectroscopy of ultra-cold systems are reported here for the operation in the 0.5 - 4 GHz spectrum of frequencies (the “L” and “S” microwave bands). The design is suitable for weak RF signal detection and spectroscopy from ultra-cold systems confined in cryogenic RF cavities, as entailed in a number of physics, physical chemistry and analytical chemistry applications, such as NMR/NQR/EPR and microwave spectroscopy, Paul traps, Bose-Einstein Condensates (BEC’s) and cavity Quantum Electrodynamics (cQED). Using a generic Low-Noise Amplifier (LNA) architecture for a GaAs enhancement mode High-Electron Mobility FET device, our design has especially been devised for scientific applications where ultra-low-noise amplification systems are sought to amplify and detect weak RF signals under various conditions and environments, including cryogenic temperatures, with the least possible noise susceptibility. The amplifier offers a 16 dB gain and a 0.8 dB noise figure at 2.5 GHz, while operating at room temperature, which can improve significantly at low temperatures. Both dc and RF outputs are provided by the amplifier to integrate it in a closed-loop or continuous-wave spectroscopy system or connect it to a variety of instruments, a factor which is lacking in commercial LNA devices. Following the amplification stage, the RF signal detection is carried out with the help of a post-amplifier and detection system based upon a set of Zero-Bias Schottky Barrier Diodes (ZBD’s) and a high-precision ultra-low noise jFET operational amplifier. The scheme offers unique benefits of sensitive detection and very-low noise amplification for measuring extremely weak on-resonance signals with substantial low- noise response and excellent stability while eliminating complicated and expensive heterodyne schemes. The LNA stage is fully capable to be a part of low-temperature experiments while being operated in cryogenic conditions down to about 500 mK.展开更多
基金the Fundamental Research Grant Scheme (FRGS/1/2018/ICT06/UNIMAP/02/1)of the Ministry of Higher Education of Malaysia.
文摘Metamaterials(MTM)can enhance the properties of microwaves and also exceed some limitations of devices used in technical practice.Note that the antenna is the element for realizing a microwave imaging(MWI)system since it is where signal transmission and absorption occur.Ultra-Wideband(UWB)antenna superstrates with MTM elements to ensure the signal transmitted from the antenna reaches the tumor and is absorbed by the same antenna.The lack of conventional head imaging techniques,for instance,Magnetic Resonance Imaging(MRI)and Computerized Tomography(CT)-scan,has been demonstrated in the paper focusing on the point of failure of these techniques for prompt diagnosis and portable systems.Furthermore,the importance ofMWIhas been addressed elaborately to portray its effectiveness and aptness for a primary tumor diagnosis.Other than that,MTM element designs have been discussed thoroughly based on their performances towards the contributions to the better image resolution of MWI with detailed reasonings.This paper proposes the novel design of a Zeroindex Split RingResonator(SRR)MTMelement superstrate with a UWB antenna implemented in MWI systems for detecting tumor.The novel design of the MTM enables the realization of a high gain of a superstrate UWB antenna with the highest gain of 5.70 dB.Besides that,the MTM imitates the conduct of the zeroreflection phase on the resonance frequency,which does not exist.An antenna with an MTM unit is of a 7×4 and 10×5 Zero-index SRR MTM element that acts as a superstrate plane to the antenna.Apart from that,Rogers(RT5880)substrate material is employed to fabricate the designed MTM unit cell,with the following characteristics:0.51mm thickness,the loss tangent of 0.02,as well as the relative permittivity of 2.2,with Computer Simulation Technology(CST)performing the simulation and design.Both MTM unit cells of 7×4 and 10×5 attained 0°with respect to the reflection phase at the 2.70 GHz frequency band.The first design,MTM Antenna Design 1,consists of a 7×4 MTM unit cell that observed a rise of 5.70 dB with a return loss(S11)−20.007 dB at 2.70 GHz frequency.The second design,MTM Antenna Design 2,consists of 10×5 MTM unit cells that recorded a gain of 5.66 dB,having the return loss(S11)−19.734 dB at 2.70 GHz frequency.Comparing these two MTM elements superstrates with the antenna,one can notice that the 7×4 MTM element shape has a low number of the unit cell with high gain and is a better choice than the 10×5 MTM element in realizing MTM element superstrates antenna for MWI.
基金the International Science and Technology Cooperation Project of the Shenzhen Science and Technology Commission(GJHZ20200731095804014).
文摘This study designs a microstrip patch antenna with an inverted T-type notch in the partial ground to detect tumorcells inside the human breast.The size of the current antenna is small enough(18mm×21mm×1.6mm)todistribute around the breast phantom.The operating frequency has been observed from6–14GHzwith a minimumreturn loss of−61.18 dB and themaximumgain of current proposed antenna is 5.8 dBiwhich is flexiblewith respectto the size of antenna.After the distribution of eight antennas around the breast phantom,the return loss curveswere observed in the presence and absence of tumor cells inside the breast phantom,and these observations showa sharp difference between the presence and absence of tumor cells.The simulated results show that this proposedantenna is suitable for early detection of cancerous cells inside the breast.
文摘This paper reviews three complex interactions between microwave energy and microorganisms (bacteria, fungi, and viruses). The first interaction comprises the detection of viruses within human blood using a 50-Ohm transmission-line vector net-analyzer (typically 0 to 10 dBm @ 2 to 8.5 GHz) where the blood is placed within a test chamber that acts as a non-50-Ohm discontinuity. The second interaction employs 1 to 6.5 W @ 8 to 26 GHz for microwave feed-horn illumination to inactivate microorganisms at an applied power density of 10 to 100 mW<sup>-2</sup>. The third interaction is within multi-mode microwave ovens, where microorganism cell membrane disruption occurs at a few 100 s of W @ 2.45 GHz and microorganism inactivation between 300 to 1800 W @ 2.45 GHz. Within the first microwave interaction, blood relaxation processes are examined. Whereas in the latter two microwave interactions, the following disruption, and inactivation mechanisms are examined: chemical cellular lysis and, microwave resonant absorption causing cell wall rupture, and thermodynamic analysis in terms of process energy budget and suspension energy density. In addition, oven-specific parameters are discussed.
文摘First,this article reviews the background of microwave imaging for early breast cancer detection,with a focus on active methods.Then active approaches,namely microwave tomography and radar-based microwave imaging,to microwave breast cancer detection are overviewed briefly,where there are recent developments in imaging algorithms as well as antennas,models,phantom and experimental systems.Lastly,we give concluding remarks and future research.In a word,the main objective of this article is to provide an overview of the principles,development,and current research status of these approaches.
基金National Key Research and Development Program of China(Grant No.2018YFB1801904)Key Program of National Natural Science Foundation of China(Grant No.61631018)Key Research Program of Frontier Sciences of CAS(Grant No.QYZDY-SSW-JSC003).
文摘Future wireless communication systemembraces physical-layer signal detection with highsensitivity, especially in the microwave photon level.Currently, the receiver primarily adopts the signal detection based on semi-conductor devices for signal detection, while this paper introduces high-sensitivityphoton-level microwave detection based on superconducting structure. We first overview existing works onthe photon-level communication in the optical spectrum as well as the microwave photon-level sensingbased on superconducting structure in both theoreticaland experimental perspectives, including microwavedetection circuit model based on Josephson junction,microwave photon counter based on Josephson junction, and two reconstruction approaches under background noise. In addition, we characterize channelmodeling based on two different microwave photondetection approaches, including the absorption barrierand the dual-path Handury Brown-Twiss (HBT) experiments, and predict the corresponding achievablerates. According to the performance prediction, it isseen that the microwave photon-level signal detectioncan increase the receiver sensitivity compared withthe state-of-the-art standardized communication system with waveform signal reception, with gain over 10dB.
基金Supported by the National Natural Science Foundation of China(No.61271323)
文摘In this paper, a collection of three-dimensional(3D)numerical breast models are developed based on clinical magnetic resonance images(MRIs). A hybrid contour detection method is used to create the contour, and the internal space is filled with different breast tissues, with each corresponding to a specified interval of MRI pixel intensity. The developed models anatomically describe the complex tissue structure and dielectric properties in breasts. Besides, they are compatible with finite-difference-time-domain(FDTD)grid cells. Convolutional perfect matched layer(CPML)is applied in conjunction with FDTD to simulate the open boundary outside the model. In the test phase, microwave breast cancer detection simulations are performed in four models with varying radiographic densities. Then, confocal algorithm is utilized to reconstruct the tumor images. Imaging results show that the tumor voxels can be recognized in every case, with 2 mm location error in two low density cases and 7 mm─8 mm location errors in two high density cases, demonstrating that the MRI-derived models can characterize the individual difference between patients' breasts.
文摘In this paper, we conduct research on the import and export of iron ore and harmful element detection method based on microwave digestion inductively coupled plasma mass spectrometry approach. Our country gradually increased demand for iron ore, iron ore trade, in order to ensure that the quality of the iron ore and taste which must be tested for total iron content. At the same time it also increased the demand for iron ore, although China' s iron ore production has been greatly improved. Our proposed approach optimizes the traditional detection method which will be meaningful.
基金jointly sponsored by the National Key Research and Development Program of China(Grant Nos.2018YFC1506701 and 2017YFC1502102)the National Natural Science Foundation of China(Grant No.41675102)。
文摘Precipitation detection is an essential step in radiance assimilation because the uncertainties in precipitation would affect the radiative transfer calculation and observation errors.The traditional precipitation detection method for microwave only detects clouds and precipitation horizontally,without considering the three-dimensional distribution of clouds.Extending precipitation detection from 2D to 3D is expected to bring more useful information to the data assimilation without using the all-sky approach.In this study,the 3D precipitation detection method is adopted to assimilate Microwave Temperature Sounder-2(MWTS-Ⅱ)onboard the Fengyun-3D,which can dynamically detect the channels above precipitating clouds by considering the near-real-time cloud parameters.Cycling data assimilation and forecasting experiments for Typhoons Lekima(2019)and Mitag(2019)are carried out.Compared with the control experiment,the quantity of assimilated data with the 3D precipitation detection increases by approximately 23%.The quality of the additional MWTS-Ⅱradiance data is close to the clear-sky data.The case studies show that the average root-mean-square errors(RMSE)of prognostic variables are reduced by 1.7%in the upper troposphere,leading to an average reduction of4.53%in typhoon track forecasts.The detailed diagnoses of Typhoon Lekima(2019)further show that the additional MWTS-Ⅱradiances brought by the 3D precipitation detection facilitate portraying a more reasonable circulation situation,thus providing more precise structures.This paper preliminarily proves that 3D precipitation detection has potential added value for increasing satellite data utilization and improving typhoon forecasts.
文摘The experimental study of ultra-wideband (UWB) technology, its generation and on-line measurement are presented. An experimental repetitive UWB system is designed, manufactured, and tested. High-pressure spark gap switch and its components, as well as oil spark gap switch are studied experimentally on the system. Experimental results indicate that the system operates at a 200 pps repetitive rate with a stable performance. 100 MW peak power UWB pulses are obtained on the system. Fast-time response capacitive divider is designed and fabricated, allowing for an accurate measurement of the high power UWB signal. The main issues related to the design of the switch and the UWB signal online measurement are discussed.
文摘Results of experimental investigation of detection (rectification) of high power X-band microwave signal in diodes of various design (semiconductor p-n-junction, point-contact, Schottky, Metal-Isolator-Metal—MIM) are reported. The maximum of the detected direct voltage V vs. power P of microwave signal and subsequent polarity reversal, previously found in MIM diodes in the optical and microwave bands, have found to be characteristic of all investigated diodes as well. After the reversal of polarity, this dependence comes linear, and the sign of the voltage corresponds to thermoEMF. In some diodes, the hysteresis on V(P) was observed. All 5 types of V(P) of MIM diodes (have made from different pairs of metals), reported earlier, were reproduced on same p-n-junction diode by variable external DC bias. These results joined with abnormal frequency cutoff forced to suggest that there is an unknown mechanism for direct flow of charge carriers (and for generate direct current) in the high-frequency electrical field, which differs from the conventional rectification.
基金Supported by the Guangxi Natural Science Foundation (No.0731025, No.0731026)the Established Project by Guangxi Education Department (No.200808LX117)
文摘The detection performance is evaluated for our proposed analog multiuser receiver in Ultra-WideBand (UWB) transmitted-reference system. In the presence of dense multipath and multi-access signals,the performance analysis is difficult due to the complicated waveform of received impulse. We develop an approach to analyze the steady-state Signal-to-Interference-plus-Noise (SINR) of the detector output. The multipath-spread impulse is fitted to an exponentially decaying profile in the analysis. A closed-form expression of steady-state SINR is further deduced for the proposed Least Minimum Square (LMS) detector. The analysis is validated by simulations in Line-Of-Sight (LOS) and Non-Line-Of-Sight (NLOS) channel respectively. Based on the theoretical results,the multipath delay spread is employed to determine the optimal width of the integration window of the detector.
文摘To obtain some prior knowledge of breast cancer detection by microwave imaging, we have measured and analyzed the complex permittivity of tissues extracted from over 140 breast cancer surgeries. The relative permittivity and conductivity of tumor at 1.6 GHz were 17.5% and 16.2% higher than those of mammary gland tissue, respectively. In invasive ductal carcinoma of scirrhous type, 8 out of 64 had higher relative permittivity and conductivity of mammary gland than those of tumor. However, when evaluated by the Debye parameter considering the frequency dependence of the tissue, it is rare that </span><i><span style="font-family:Verdana;">ε</span></i><sub><span style="font-family:Verdana;">∞</span></sub><span style="font-family:Verdana;"> and Δ</span><i><span style="font-family:Verdana;">ε</span></i><span style="font-family:Verdana;"> of cancer are simultaneously lower than those of mammary gland. The relative permittivity and conductivity of fibroadenoma are almost the same as those of mammary glands. The relative permittivity and conductivity of each tissue showed strong linearity. Microwave imaging requires accurate reconstruction of </span><i><span style="font-family:Verdana;">ε</span></i><sub><span style="font-family:Verdana;">∞</span></sub><span style="font-family:Verdana;"> and Δ</span><i><span style="font-family:Verdana;">ε</span></i><span style="font-family:Verdana;"> to distinguish cancer from normal tissue.
文摘A novel efficient circuit for Ultra-WideBand(UWB) balanced sub-nanosecond monocycle pulse generation is presented.The pulse generator employs wideband bipolar transistor,step recovery diodes,Schottky diodes,and simple charging and discharging circuitry.Simple transient analysis and design of the circuit are presented along with their operating principle.The pulse generator produces truly balanced monocycle pulse with 500 ps pulse-width and 800 mV peak voltage.The generated monocycle pulse also has very symmetrical positive and negative portions and low ringing level.The presented pulse generator can be used as both a transmitter feeding UWB balanced antennas without broadband baluns and a balanced switching pulse generator that used in UWB receiver.
基金the National Natural Science foundationof China(No.20875060) for financial support
文摘Microwave-assisted extraction was optimized with response surface methodology for HPLC-fluorescence determination of puerarin and daidzein in Radix Puerariae thomsonii.The optimized extraction procedure was achieved by soaking the sample with 70% methanol(1∶15,v/v)for 30 min,and then microwave irradiation for 11 min at a power of 600 W.Coupling the extraction process with HPLC-fluorescence presented good recovery,satisfactory precision,and good linear relation.Compared with a method from the Chinese Pharmacopoeia,the proposed method enables higher extraction efficiency and more accurate analytical results.It can be of potential value in quality assessment of Radix Puerariae thomsonii medicinal materials.
基金This research was funded by National Science,Research and Innovation Fund(NSRF)King Mongkut’s University of Technology North Bangkok with Contract no.KMUTNB-FF-65–07.
文摘This paper presents the design and analysis of antipodal Vivaldi antennas(AVAs)for breast cancer detection.In order to enhance the antenna gain,different techniques such as using the uniform and non-uniform corrugation,expanding the dielectric substrate and adding the parasitic patch are applied to original AVA.The design procedure of two developed AVA structures i.e.,AVA with non-uniform corrugation and AVA with parasitic patch are presented.The proposed AVAs are designed on inexpensive FR4 substrate.The AVA with non-uniform corrugation has compact dimension of 50×50 mm2 or 0.28λL×0.28λL,whereλL is wavelength of the lowest operating frequency.The antenna can operate within the frequency range from 1.63 GHz to over 8 GHz.For the AVA with parasitic patch and uniform corrugation,the overall size of antenna is 50×86 mm2 or 0.24λL×0.41λL.It can operate within the frequency range from 1.4 GHz to over 8 GHz.The maximum gain for AVA with non-uniform corrugation and AVA with parasitic patch and uniform corrugation are 9.03 and 11.31 dBi,respectively.The corrugation profile and parasitic patch of the proposed antenna are optimized to achieve the desired properties for breast cancer detection.In addition,the proposed AVAs are measured with breast phantom to detect cancerous cell inside the breast and the performance in detecting cancerous cell are discussed.The measured result can confirm that the proposed AVAs can detect unwanted cell inside the breast while maintaining the compact size,simple structure and low complexity in design.
基金the National Natural Science Foundation of China(No60432040)the Guangxi Key Laboratory Foundation(No,063006-5G)
文摘To solve the problem that the conventional detections in DS-CDMA suffer from high complexity and poor robustness for the time-hopping pulse signals, the received pulse signals were remodeled, and a mulfipath-free detection scheme, which provides a simple approach to select samples of received signals, was introduced. By this scheme, the subsequent multiuser detection (MUD) would get rid of the mis- match due to the correlative multipath signal in IR-UWB. In addition, a computationally efficient recur-sive least squares (RLS) type algorithm based on least mean fourth (LMF) criterion is derived to suppress multi-access interference. The proposed multiuser detection algorithm performs well at low complexity, even in dense muhipath environment.
文摘In this work, experiment investigations and simulation studies of a waveguide-based microwave plasma source operated at 2.45 GHz in atmospheric pressure helium gas are presented. The plasma source has been designed in conjunction with a gas spectrograph as a speciation analysis tool. Emitted He spectra are observed for gas flow rates between (0.2-1) L/min and microwave power in the range (15-150) W. The results obtained demonstrate maximum excitation temperature of about 3800 K and gas temperature of about 2000 K. Mixtures containing small amounts of mercury atoms are considered and the resonant emission of Hg atoms at 253.56 nm is detected. The spectroscopic measurements are completed with a collisional radiative model delivering the electron density and temperature, the amplitude of the electric microwave field, and the population of the excited atomic states for a given absorbed power and gas temperature, The electromagnetic field distribution in the plasma source is obtained by solving Maxwell's equations. Electric field strength of several 10^5 V/m is obtained that agrees well with the results of the collisional radiative model. The calculated and measured line intensity ratios of He spectral lines agree within 300/0-40%.
基金Supported by the National Natural Science Foundation of China(No.61562058)Lanzhou University of Technology Hongliu Excellent Youth Talent Support Program。
文摘In view of the inaccuracy of the estimated symbols on the edge of the observation window, a decision-feedback subset aided multiple-symbol differential detection(MSDD) framework, dubbed DF-S-MSDD, is proposed in ultra-wideband impulse radio(UWB-IR) system with differential space-time block-code(DSTBC) modulation. Specifically, motivated by the decision-feedback aided MSDD(DF-MSDD), a subset of the decision-feedback symbols is selected, and the optimal symbols are preserved, and then all the remaining symbols are optimized. Furthermore, the simulations validate that the proposed DF-S-MSDD provides solid bit error-rate performance with a low complexity in UWB-IR system with DSTBC modulation.
基金Acknowledgments We gratefully acknowledge the support from the Russian Science Foundation, project number 16-19-00181, for this work.
文摘We present a robust and computationally efficient image reconstruction and object detection algorithm suitable for a microwave holographic vision system with several microwave sensors and a single emission source to detect the presence and the nature of road obstacles impeding driving in the near vehicle zone. The holographic visualization technique allows reconstructing the spatial microwave scattering density in non-optical setting, detecting by lattice of sensors both amplitude and phase of a reflected signal We discuss versions of an algorithm, determine and analyze its resolution limits for various distances with different number of sensors for a one-dimensional test problem of detecting two walls (or posts) separated by a gap at a fixed distance. The interval between sensors needed for a reliable reconstruction equals about one Fresnel zone width. We show that detection distances and spatial resolution achieved (better than 20 cm on distances up to 4.5 m) were sufficient for near-vehicle object detection purposes.
文摘The design and development of a cryogenic Ultra-Low-Noise Signal Amplification (ULNA) and detection system for spectroscopy of ultra-cold systems are reported here for the operation in the 0.5 - 4 GHz spectrum of frequencies (the “L” and “S” microwave bands). The design is suitable for weak RF signal detection and spectroscopy from ultra-cold systems confined in cryogenic RF cavities, as entailed in a number of physics, physical chemistry and analytical chemistry applications, such as NMR/NQR/EPR and microwave spectroscopy, Paul traps, Bose-Einstein Condensates (BEC’s) and cavity Quantum Electrodynamics (cQED). Using a generic Low-Noise Amplifier (LNA) architecture for a GaAs enhancement mode High-Electron Mobility FET device, our design has especially been devised for scientific applications where ultra-low-noise amplification systems are sought to amplify and detect weak RF signals under various conditions and environments, including cryogenic temperatures, with the least possible noise susceptibility. The amplifier offers a 16 dB gain and a 0.8 dB noise figure at 2.5 GHz, while operating at room temperature, which can improve significantly at low temperatures. Both dc and RF outputs are provided by the amplifier to integrate it in a closed-loop or continuous-wave spectroscopy system or connect it to a variety of instruments, a factor which is lacking in commercial LNA devices. Following the amplification stage, the RF signal detection is carried out with the help of a post-amplifier and detection system based upon a set of Zero-Bias Schottky Barrier Diodes (ZBD’s) and a high-precision ultra-low noise jFET operational amplifier. The scheme offers unique benefits of sensitive detection and very-low noise amplification for measuring extremely weak on-resonance signals with substantial low- noise response and excellent stability while eliminating complicated and expensive heterodyne schemes. The LNA stage is fully capable to be a part of low-temperature experiments while being operated in cryogenic conditions down to about 500 mK.