针对在局部阴影条件下,光伏阵列的功率-电压特性曲线呈现多个峰值,传统群体智能优化存在收敛速度慢、振荡幅度大和易陷入局部最优等问题,提出一种基于PSO-GWO(Particle Swarm Optimization-Grey Wolf Optimization)算法的MPPT(Maximum P...针对在局部阴影条件下,光伏阵列的功率-电压特性曲线呈现多个峰值,传统群体智能优化存在收敛速度慢、振荡幅度大和易陷入局部最优等问题,提出一种基于PSO-GWO(Particle Swarm Optimization-Grey Wolf Optimization)算法的MPPT(Maximum Power Point Tracking)控制方法。该算法引入余弦规律变化的收敛因子,平衡GWO算法的全局搜索与局部搜索能力;引入PSO算法,提高灰狼个体与自身经验之间的信息交流。仿真结果表明,提出的PSO-GWO算法在局部阴影条件下不仅能快速收敛,而且功率输出震荡幅度更小,有效提升了局部遮阴条件下光伏阵列的最大功率跟踪效率和精度。展开更多
针对光伏阵列的输出特性在局部阴影情况下具有高度非线性、时变性以及多个局部功率极值点等特点,并导致传统MPPT(maximum power point tracking)算法失效的问题,提出一种基于粒子群优化算法和变步长扰动观察法的改进MPPT算法。其中粒子...针对光伏阵列的输出特性在局部阴影情况下具有高度非线性、时变性以及多个局部功率极值点等特点,并导致传统MPPT(maximum power point tracking)算法失效的问题,提出一种基于粒子群优化算法和变步长扰动观察法的改进MPPT算法。其中粒子群优化算法用于系统启动和光照情况发生突变后迅速定位近似最大功率点,变步长扰动观察法则根据实际状况使光伏阵列精确稳定在最大功率点,以克服使用数学模型与实际输出特性偏差或微小扰动所导致的功率损失。通过建立Matlab/Simulink模型进行仿真实验,实验结果表明所提算法使光伏阵列在不同阴影情况下以及发生光照强度突变时都具有迅速精确的跟踪能力。展开更多
文摘针对在局部阴影条件下,光伏阵列的功率-电压特性曲线呈现多个峰值,传统群体智能优化存在收敛速度慢、振荡幅度大和易陷入局部最优等问题,提出一种基于PSO-GWO(Particle Swarm Optimization-Grey Wolf Optimization)算法的MPPT(Maximum Power Point Tracking)控制方法。该算法引入余弦规律变化的收敛因子,平衡GWO算法的全局搜索与局部搜索能力;引入PSO算法,提高灰狼个体与自身经验之间的信息交流。仿真结果表明,提出的PSO-GWO算法在局部阴影条件下不仅能快速收敛,而且功率输出震荡幅度更小,有效提升了局部遮阴条件下光伏阵列的最大功率跟踪效率和精度。
基金国家重点基础研究发展规划(973)(the National Grand Fundamental Research 973 Program of China under Grant No.2002CB312103)河南省自然科学基金(the Natural Science Foundation of Henan Province of China under Grant No.0611051900)。
文摘针对光伏阵列的输出特性在局部阴影情况下具有高度非线性、时变性以及多个局部功率极值点等特点,并导致传统MPPT(maximum power point tracking)算法失效的问题,提出一种基于粒子群优化算法和变步长扰动观察法的改进MPPT算法。其中粒子群优化算法用于系统启动和光照情况发生突变后迅速定位近似最大功率点,变步长扰动观察法则根据实际状况使光伏阵列精确稳定在最大功率点,以克服使用数学模型与实际输出特性偏差或微小扰动所导致的功率损失。通过建立Matlab/Simulink模型进行仿真实验,实验结果表明所提算法使光伏阵列在不同阴影情况下以及发生光照强度突变时都具有迅速精确的跟踪能力。