期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Cu-Ni-PGES MINERALIZATION OF MELANOCRATIC ROCKS IN SOUTHEAST MARGIN OF THE QINGHAI-XIZANG(TIBET) PLATEAU, HKT
1
作者 Cao Zhimin 1, Luo Yaonan 2, Li Youguo 1, Song Xieyan 1, Chen Cuihua 1, Yang Zhusheng 2, He Hong 2 2 Sichuan Bureau of geology and Mineral Resources, Chengdu 610081,China) 《地学前缘》 EI CAS CSCD 2000年第S1期415-415,共1页
The Panxi Rift Zone is a famous metallogenic province in Southwest China. Continental rifting developed in Hercynian period (P 2, 260~250Ma) accompany with a series of basic\|ultrabasic rocks. Various in lithologies,... The Panxi Rift Zone is a famous metallogenic province in Southwest China. Continental rifting developed in Hercynian period (P 2, 260~250Ma) accompany with a series of basic\|ultrabasic rocks. Various in lithologies, such as layered intrusions (V\|Ti\|Fe formation), small\|sized mafic\|ultramafic bodies (stocks) and large\|scale basalt (Emeishan Basalt) are constituted of a complete melanocratic rock system.Most of Cu\|Ni\|PGE sulfide deposits are related to small\|sized ultramafic rock bodies. It is a perfect possibility for them to be an affinity of basic eruptive lava and for the neck facies. But in ① Panzhihua\|Center Yunnan Province, the Gaojiacun, also Jinbaoshan, as large stratiform basic\|ultrabasic complex used to be thought that is older one intruded to basement rocks in Precambrian. However, new evidences suggest it is similar with the small\|sized ultramafic rock bodies containing Cu\|Ni\|PGE, and also the both are affinity of the Emeishan Basalt; ② Miyi district, Cu\|Pt mineralization was discovered in the Xinjie bedded basic complex, and in where ophitic olivine\|pyroxenite\|peridotite facies are exactly Pt\|bearing layers; ③ Longzhoushan district, we have recently researched basic\|ultrabasic clusters which intruded into fracture zones, and Cu\|Ni\|Pt, Pd mineralization developed at the salbands.Generally, the basalt is poor in PGE and rich in Cu. It is suggested as the result of PGE dispersion\|concentration processing in the melanocratic rock system when rifting happened. 展开更多
关键词 Cu\|Ni\|PGEs MINERALIZATION Province melanocratic ROCKS em eishan basalt basic\|ultrabasic complex SOUTHEAST MARGIN the Qinghai —Xizang(Tibet) PLATEAU HKT
下载PDF
Phase equilibrium modeling of zircon stability in mantle peridotite:Implication for crust-mantle interaction
2
作者 Hua XIANG Jianping ZHENG +1 位作者 Yibing LI Zeming ZHANG 《Science China Earth Sciences》 SCIE EI CSCD 2022年第2期282-298,共17页
Zircon is a common accessory mineral in various rocks,especially in the crustal ones.It is the best mineral for U-Pb dating.Meanwhile,trace elements and isotopes of the mineral can also provide much information concer... Zircon is a common accessory mineral in various rocks,especially in the crustal ones.It is the best mineral for U-Pb dating.Meanwhile,trace elements and isotopes of the mineral can also provide much information concerning the formation and evolution of rocks.There are a growing number of reports of zircon existing in mantle peridotite.However,it is generally considered that zircon is unlikely crystallized in ultrabasic rocks due to SiO_(2)-unsaturation.In this paper,the SiO_(2) activity and zircon/baddeleyite transition curve at different conditions were calculated through thermodynamic phase equilibrium modeling,to reveal the main factors affecting the SiO_(2) activity and the stability of zircon/baddeleyite in ultrabasic and basic rocks,especially in mantle peridotite.These results provide a thermodynamic basis for interpreting the genesis and significance of zircon in mantle rocks.That is,the SiO_(2) activity is mainly controlled by stable mineral assemblages and temperature-pressure conditions.The orthopyroxene+olivine assemblage in peridotite as an effective buffer restricts the SiO_(2) activity in a relatively high range with a small variation.The upper temperature limit of zircon can reach more than 1500℃ with this mineral assemblage.During the low-temperature serpentinization of peridotite,the replacement of olivine and pyroxene by serpentine can result in a significant decrease of SiO_(2) activity,and baddeleyite can be stabilized at<530℃ and<2.7 GPa.When peridotite is strongly metasomatized by the SiO_(2)-bearing fluid,the addition of SiO_(2) can increase its activity and make zircon stable at low temperatures.The SiO_(2) activity in ultrabasic-basic rocks is not only positively correlated with the SiO_(2) content but also negatively correlated with the Ca and Na contents of rocks.This is because Ca and Na preferentially combine with Si and Al to form Si-rich minerals,such as clinopyroxene and feldspar.This process will consume excessive SiO_(2),decreasing the SiO_(2) activity.This may be the reason why zircon can be found in ultrabasic rocks,while baddeleyite can exist in some basic and alkaline rocks.The thermodynamic modeling can also reasonably explain the mutual transformation between zircon and baddeleyite in ultrabasic-basic rocks.Our results indicate that zircon can exist stably in mantle peridotite in a wide range of temperature-pressure conditions and its formation is related to melt/fluid metasomatism.That is,the presence of zircon in mantle peridotite is an important information carrier of crust-mantle interaction for deep material cycling. 展开更多
关键词 ZIRCON BADDELEYITE Phase equilibrium modeling Mantle peridotite ultrabasic rock
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部