A novel technology of preparation of felt-metal supported modified polyvinyl alcohol(PVA) ultrafiltration(UF) membrane was invented, which could avoid the blockage of the holes of support layer and the leakage of ...A novel technology of preparation of felt-metal supported modified polyvinyl alcohol(PVA) ultrafiltration(UF) membrane was invented, which could avoid the blockage of the holes of support layer and the leakage of the casting solution through the holes of support layer. Felt-metal supported ferric sulfate modified PVA composite UF membranes were prepared by the innovative technology. The results show that the composite membranes are used to treat 1 000 mg/L oil/water emulsion at trans-membrane pressure from 0.25 to 0.45 MPa, the permeate flux is from 36 to 52 L/(m2·h), and the retention of chemical oxygen demand(COD) is over 92%. The composite membrane resistance increases with the increase of trans-naembrane pressure.展开更多
Membrane fouling is always the biggest problem in the practice of membrane separation technologies,which strongly impacts their applicability,separation efficiency,cost effectiveness,and service lifespan.Herein,a simp...Membrane fouling is always the biggest problem in the practice of membrane separation technologies,which strongly impacts their applicability,separation efficiency,cost effectiveness,and service lifespan.Herein,a simple but effective 3D modification approach was designed for permanently functionalizing polymeric membranes by directly cross-linking polyvinyl alcohol(PVA)under gamma-ray irradiation at room temperature without any additives.After the modification,a PVA layer was constructed on the membrane surface and the pore inner surface of polyvinylidene fluoride(PVDF)membranes.This endowed them with good hydrophilicity,low adsorption of protein model foulants,and easy recoverability properties.In addition,the pore size and distribution were customized by controlling the PVA concentration,which enhanced the rejection ability of the resultant membranes and converted them from microfiltration to ultrafiltration.The crosslinked PVA layer was equipped with the resultant membranes with good resistance to chemical cleaning by acidic,alkaline,and oxidative reagents,which could greatly prolong the membrane service lifetime.Furthermore,this approach was demonstrated as a universal method to modify PVDF membranes with other hydrophilic macromolecular modifiers,including polyethylene glycol,sodium alginate,and polyvinyl pyrrolidone.This modification of the membranes effectively endowed them with good hydrophilicity and antifouling properties,as expected.展开更多
Tight ceramic ultrafiltration membranes have been proven to exhibit good rejection performance for reactive dye wastewater at high temperatures because of their high thermal and chemical resistance.However,the applica...Tight ceramic ultrafiltration membranes have been proven to exhibit good rejection performance for reactive dye wastewater at high temperatures because of their high thermal and chemical resistance.However,the application of ceramic membranes for the treatment of cationic dye wastewater is challenging because of their surface charge.In this study,a ceramic membrane is modified by grafting aminosilane(KH-551)to enhance the positive charge of the membrane surface.The rejection performance of the charged modified ceramic membrane toward the methylene blue solution is significantly improved.The modification substance is bonded to the ceramic membrane surface via covalent bonding,which imparts good thermal stability.The modified ceramic membrane exhibits stable separation performance toward the methylene blue solution.Overall,this study provides valuable guidance for the adjustment of the ceramic membrane surface charge for treating industrial cationic dye wastewater.展开更多
Metal-polyvinyl alcohol(PVA) composite ultrafiltration membranes were prepared by coating a certain concentration of PVA solution on metallic fiber sintered membranes. The effects of preparation conditions, such as th...Metal-polyvinyl alcohol(PVA) composite ultrafiltration membranes were prepared by coating a certain concentration of PVA solution on metallic fiber sintered membranes. The effects of preparation conditions, such as the coating solution concentration, sequence and times of coating, and heat-treatment on the properties of the composite membranes were studied. The results show that the hole diameter of the composite membrane decreases with the increase of the concentration of PVA, the hole diameter of composite membrane is different when the sequence of coating is different. When the higher concentration of PVA solution is used to coat the metallic membrane for the first time and the other smaller one for the second time, the hole diameter of the composite membrane is relatively small, compared with that of the composite membrane made by the smaller concentration of PVA solution for the first time and the other higher one for the second time. The holes of the composite membrane contract and the stability of the membrane is improved by heat treatment. When metal-PVA composite hydrophilic membranes are used to treat the oil/water emulsion with the concentration of 1 000 mg·L -1 , the retention is from 80% to 90%, and the permeate flux is from 15 L·m -2 ·h -1 to 40 L·m -2 ·h -1 at pressure of 0.2 to 0.3 MPa.展开更多
Heterogeneous photocatalysis,an advanced oxidation process,has garnered extensive attention in the field of environmental remediation because it involves the direct utilization of solar energy for the removal of numer...Heterogeneous photocatalysis,an advanced oxidation process,has garnered extensive attention in the field of environmental remediation because it involves the direct utilization of solar energy for the removal of numerous pollutants.However,the application of heterogeneous photocatalysis in environmental remediation has not achieved the expected consequences due to enormous challenges such as low photocatalytic efficiencies and high costs of heterogeneous photocatalysts in large-scale practical applications.Furthermore,pollutants in the natural environment,including water,air,and solid phases,are diverse and complex.Therefore,extensive efforts should be made to better understand and apply heterogeneous photocatalysis for environmental remediation.Herein,the fundamentals of heterogeneous photocatalysis for environmental remediation are introduced.Then,potential semiconductors and their modification strategies for environmental photocatalysis are systematically presented.Finally,conclusions and prospects are briefly summarized,and the direction for the future development of environmental photocatalysis is explored.This review may provide reference directions toward understanding,researching,and designing photocatalytic remediation systems for various environmental pollutants.展开更多
The modified PVA CA blend ultrafiltration membranes were prepared by phase inversion from the casting solutions consisting of polyvinyl alcohol(PVA), cellulose acetate(CA), acetic acid, alkali metal chloride and water...The modified PVA CA blend ultrafiltration membranes were prepared by phase inversion from the casting solutions consisting of polyvinyl alcohol(PVA), cellulose acetate(CA), acetic acid, alkali metal chloride and water. The effects of different concentration of alkali metal chloride on the properties of membranes were investigated. The results show that when the mass fraction of the salt in the casting solution is not greater than 1%, the property of rejection of the alkali metal salt modified ultrafiltration PVA CA blend membrane has little change compared with that of the unmodified PVA CA blend membrane, but the permeation flux is much greater than that of the unmodified membrane under the same operation condition. When the mass fraction of the salt is greater than 1.5%, the permeate flux increases much greater than that of the unmodified membrane, but the property of rejection of the modified ultrafiltration membrane decreases greatly. The results also show that the contact angle of the salt modified PVA CA blend UF membrane decreases but the swelling in water increases with the increment of the mass fraction of alkali metal salts. Furthermore, the NaCl modified PVA CA blend membrane has a slightly lower swelling and a little smaller contact angle of water than the KCl modified PVA CA blend membrane does when the mass fraction of salts is the same.展开更多
The adsorption of pollutants can not only promote the direct surface reaction,but also modify the catalyst itself to improve its photoelectric characteristics,which is rarely studied for water treatment with inorganic...The adsorption of pollutants can not only promote the direct surface reaction,but also modify the catalyst itself to improve its photoelectric characteristics,which is rarely studied for water treatment with inorganic photocatalyst.A highly crystalline BiOBr(c-BiOBr)was synthesized by a two-step preparation process.Owing to the calcination,the highly crystalline enhanced the interface interaction between pollutant and c-BiOBr.The complex of organic pollutant and[Bi_(2)O_(2)]^(2+)could promote the active electron transfer from the adsorbed pollutant to c-BiOBr for the direct pollutant degradation by holes(h^(+)).Moreover,the pollutant adsorption actually modified c-BiOBr and promoted more unpaired electrons,which would coupling with the photoexcitation to promote generate more O_(2)^(•-).The molecular modification effect derived from pollutant adsorption significantly improved the removal of pollutants.This work strongly deepens the understanding of the molecularmodification effect from the pollutant adsorption and develops a novel and efficient approach for water treatment.展开更多
Previous studies have shown that exposure to black carbon(BC,a tracer of traffic-related air pollution)and psychosocial stress are both associated with adverse cardiac effects,but whether psychosocial stress could mod...Previous studies have shown that exposure to black carbon(BC,a tracer of traffic-related air pollution)and psychosocial stress are both associated with adverse cardiac effects,but whether psychosocial stress could modify the cardiac effects of BC is unclear.To investigate the potential modifying effect of psychosocial stress on the associations between acute exposure to BC and typical cardiac health variables,real-time personal 24 h measurements were conducted in a repeated-measure study among adults with elevated blood pressure(high-risk group)and a panel study among normal adults(low-risk group)in China.Measured cardiac health variables included ST-segment depression events,heart rate,and heart rate variability(HRV)variables.Perceived Stress Scale,State Anxiety Inventory and Self-rating Depression Scale were used to assess the recent psychosocial stress status of the participants,and a composite stress index was established based on these scales.Generalized linear mixed-effects model was used to analyze the associations between BC exposure and cardiac health variables and potential effect modification by psychosocial stress.A total of 9724 h measurements among 97 participants in the repeated-measure study and 20224 h measurements among 87 participants in the panel study were included in the final analysis.Acute BC exposure was significantly associated with increased ST-segment depression events and heart rate and decreases in HRV in both studies.The marginal effects of acute BC exposure on most cardiac health variables generally tended to be amplified under higher vs low levels of psychosocial stress in both studies,with the composite stress index apparently modifying the associations of BC exposure with most ST-segment depression events and HRV variables.These findings suggest that psychosocial stress may increase the participants’cardiac susceptibility to BC exposure,which could be helpful for the identification of susceptible individuals in the context of traffic-related air pollution.展开更多
The application of industrial solid wastes as environmentally functional materials for air pollutants control has gained much attention in recent years due to its potential to reduce air pollution in a cost-effective ...The application of industrial solid wastes as environmentally functional materials for air pollutants control has gained much attention in recent years due to its potential to reduce air pollution in a cost-effective manner.In this review,we investigate the development of industrialwaste-based functional materials for various gas pollutant removal and consider the relevant reaction mechanism according to different types of industrial solid waste.We see a recent effort towards achieving high-performance environmental functional materials via chemical or physical modification,in which the active components,pore size,and phase structure can be altered.The review will discuss the potential of using industrial solid wastes,these modified materials,or synthesized materials from raw waste precursors for the removal of air pollutants,including SO_(2),NO_(x),Hg^(0),H_(2)S,VOCs,and CO_(2).The challenges still need to be addressed to realize this potential and the prospects for future research fully.The suggestions for future directions include determining the optimal composition of these materials,calculating the real reaction rate and turnover frequency,developing effective treatment methods,and establishing chemical component databases of raw industrial solid waste for catalysts/adsorbent preparation.展开更多
Various hydrophilic poly(ethylene-co-vinyl alcohol)(EVOH)were used herein to precisely control the structure and hydrodynamic properties of polysulfone(PSF)membranes.Particularly,to prepare pristine PSF and PSF/EVOH b...Various hydrophilic poly(ethylene-co-vinyl alcohol)(EVOH)were used herein to precisely control the structure and hydrodynamic properties of polysulfone(PSF)membranes.Particularly,to prepare pristine PSF and PSF/EVOH blends with increasing vinyl alcohol(VOH:73%,68%,56%),the non-solvent-induced phase separation(NIPS)technique was used.Polyethylene glycol was used as a compatibilizer and as a porogen in N,Ndimethylacetamide.Rheological and ultrasonic separation kinetic measurements were also carried out to develop an ultrafiltration membrane mechanism.The extracted membrane properties and filtration capabilities were systematically compared to the proposed mechanism.Accordingly,the addition of EVOH led to an increase in the rheology of the dopes.The resulting membranes exhibited a microporous structure,while the finger-like structures became more evident with increasing VOH content.The PSF/EVOH behavior was changed from immediate to delayed segregation due to a change in the hydrodynamic kinetics.Interestingly,the PSF/EVOH32 membranes showed high hydrophilicity and achieved a pure water permeability of 264 L·m^(–2)·h^(–1)·bar^(–1),which was higher than that of pure PSF membranes(171 L·m^(–2)·h^(–1)·bar^(–1)).In addition,PSF/EVOH32 rejected bovine serum albumin at a high rate(>90%)and achieved a significant restoration of permeability.Finally,from the thermodynamic and hydrodynamic results,valuable insights into the selection of hydrophilic copolymers were provided to tailor the membrane structure while improving both the permeability and antifouling performance.展开更多
In the process of catalytic destruction of chlorinated volatile organic compounds(CVOCs),the catalyst is prone to chlorine poisoning and produce polychlorinated byproducts with high toxicity and persistence,bringing g...In the process of catalytic destruction of chlorinated volatile organic compounds(CVOCs),the catalyst is prone to chlorine poisoning and produce polychlorinated byproducts with high toxicity and persistence,bringing great risk to atmospheric environment and human health.To solve these problems,this work applied phosphate to modify K-OMS-2 catalysts.The physicochemical properties of catalysts were determined by using X-ray powder diffraction(XRD),scanning electron microscope(SEM),X-ray photoelectron spectroscopy(XPS),hydrogen temperature programmed reduction(H_(2)-TPR),pyridine adsorption Fouriertransform infrared(Py-IR)and water temperature programmed desorption(H_(2)O-TPD),and chlorobenzene was selected as a model pollutant to explore the catalytic performance and byproduct inhibition function of phosphating.Experimental results revealed that 1 wt.%phosphate modification yielded the best catalytic activity for chlorobenzene destruction,with the 90%conversion(T90)at approximately 247℃.The phosphating significantly decreased the types and yields of polychlorinated byproducts in effluent.After phosphating,we observed significant hydroxyl groups on catalyst surface,and the active centerwas transformed into Mn(IV)-O…H,which promoted the formation of HCl,and enhanced the dechlorination process.Furthermore,the enriched Lewis acid sites by phosphating profoundly enhanced the deep oxidation ability of the catalyst,which promoted a rapid oxidation of reaction intermediates,so as to reduce byproducts generation.This study provided an effective strategy for inhibiting the toxic byproducts for the catalytic destruction of chlorinated organics.展开更多
This study reports several modification strategies to optimize and enhance the performance of twodimensional(2D) metal organic frameworks(MOFs)-derived catalysts in peroxydisulfate(PDS) activation.The raw 2D Ni-MOF an...This study reports several modification strategies to optimize and enhance the performance of twodimensional(2D) metal organic frameworks(MOFs)-derived catalysts in peroxydisulfate(PDS) activation.The raw 2D Ni-MOF and 2D Ni-Fe-MOF without modification show poor catalytic activities for PDS activation and high metal ion leaching. The carbonization of 2D MOF can increase the activity of the catalyst but cannot solve the metal leaching problem. The further acid treatment of carbonization products can further improve the catalytic activity and decrease the metal ion leaching. The in-situ growth of2D MOF on graphene oxide(GO) support with subsequent carbonization and acid treatment offers the best performance in PDS activation for organic pollutant removal with low metal ion leaching. Compared with other PDS systems, the Ni-Fe-C-acid/GO system displays much lower catalyst and PDS dosages for p-chloroaniline degradation. This study presents new insights in the modification strategies of 2D MOFbased catalysts in PDS activation.展开更多
For the reduction of bovine serum proteins from wastewater,a novel mixed matrix membrane was prepared by functionalizing the substrate material polyaryletherketone(PAEK),followed by carboxyl groups(C-SPAEKS),and then ...For the reduction of bovine serum proteins from wastewater,a novel mixed matrix membrane was prepared by functionalizing the substrate material polyaryletherketone(PAEK),followed by carboxyl groups(C-SPAEKS),and then adding amino-functionalized UiO-66-NH_(2)(Am-UiO-66-NH_(2)).Aminofunctionalization of UiO-66 was accomplished by melamine,followed by an amidation reaction to immobilize Am-UiO-66-NH_(2),which was immobilized on the surface of the membrane as well as in the pore channels,which enhanced the hydrophilicity of the membrane surface while increasing the negative potential of the membrane surface.This nanoparticle-loaded ultrafiltration membrane has good permeation performance,with a pure water flux of up to 482.3 L·m^(-2)·h^(-1) for C-SPAEKS/AmUiO-66-NH_(2) and a retention rate of up to 98.7%for bovine serum albumin(BSA)-contaminated solutions.Meanwhile,after several hydrophilic modifications,the flux recovery of BSA contaminants by this series of membranes increased from 56.2%to 80.55%of pure membranes.The results of ultra-filtration flux time tests performed at room temperature showed that the series of ultrafiltration membranes remained relatively stable over a test time of 300 min.Thus,the newly developed mixed matrix membrane showed potential for high efficiency and stability in wastewater treatment containing bovine serum proteins.展开更多
文摘A novel technology of preparation of felt-metal supported modified polyvinyl alcohol(PVA) ultrafiltration(UF) membrane was invented, which could avoid the blockage of the holes of support layer and the leakage of the casting solution through the holes of support layer. Felt-metal supported ferric sulfate modified PVA composite UF membranes were prepared by the innovative technology. The results show that the composite membranes are used to treat 1 000 mg/L oil/water emulsion at trans-membrane pressure from 0.25 to 0.45 MPa, the permeate flux is from 36 to 52 L/(m2·h), and the retention of chemical oxygen demand(COD) is over 92%. The composite membrane resistance increases with the increase of trans-naembrane pressure.
基金This work was supported by the National Natural Science Foundation of China(Nos.11875313,12075153,and 11575277).
文摘Membrane fouling is always the biggest problem in the practice of membrane separation technologies,which strongly impacts their applicability,separation efficiency,cost effectiveness,and service lifespan.Herein,a simple but effective 3D modification approach was designed for permanently functionalizing polymeric membranes by directly cross-linking polyvinyl alcohol(PVA)under gamma-ray irradiation at room temperature without any additives.After the modification,a PVA layer was constructed on the membrane surface and the pore inner surface of polyvinylidene fluoride(PVDF)membranes.This endowed them with good hydrophilicity,low adsorption of protein model foulants,and easy recoverability properties.In addition,the pore size and distribution were customized by controlling the PVA concentration,which enhanced the rejection ability of the resultant membranes and converted them from microfiltration to ultrafiltration.The crosslinked PVA layer was equipped with the resultant membranes with good resistance to chemical cleaning by acidic,alkaline,and oxidative reagents,which could greatly prolong the membrane service lifetime.Furthermore,this approach was demonstrated as a universal method to modify PVDF membranes with other hydrophilic macromolecular modifiers,including polyethylene glycol,sodium alginate,and polyvinyl pyrrolidone.This modification of the membranes effectively endowed them with good hydrophilicity and antifouling properties,as expected.
基金supported by the Project for Natural Science Research of Jiangsu Higher Education Institutions(20KJA530001)the National Natural Science Foundation of China(22078147,21808107)the Natural Science Foundation of Jiangsu Province(BK20180163)and the Research Project of National Synthetic Biotechnology Innovation Centre(TSBICIP-KJGG-002-16).
文摘Tight ceramic ultrafiltration membranes have been proven to exhibit good rejection performance for reactive dye wastewater at high temperatures because of their high thermal and chemical resistance.However,the application of ceramic membranes for the treatment of cationic dye wastewater is challenging because of their surface charge.In this study,a ceramic membrane is modified by grafting aminosilane(KH-551)to enhance the positive charge of the membrane surface.The rejection performance of the charged modified ceramic membrane toward the methylene blue solution is significantly improved.The modification substance is bonded to the ceramic membrane surface via covalent bonding,which imparts good thermal stability.The modified ceramic membrane exhibits stable separation performance toward the methylene blue solution.Overall,this study provides valuable guidance for the adjustment of the ceramic membrane surface charge for treating industrial cationic dye wastewater.
文摘Metal-polyvinyl alcohol(PVA) composite ultrafiltration membranes were prepared by coating a certain concentration of PVA solution on metallic fiber sintered membranes. The effects of preparation conditions, such as the coating solution concentration, sequence and times of coating, and heat-treatment on the properties of the composite membranes were studied. The results show that the hole diameter of the composite membrane decreases with the increase of the concentration of PVA, the hole diameter of composite membrane is different when the sequence of coating is different. When the higher concentration of PVA solution is used to coat the metallic membrane for the first time and the other smaller one for the second time, the hole diameter of the composite membrane is relatively small, compared with that of the composite membrane made by the smaller concentration of PVA solution for the first time and the other higher one for the second time. The holes of the composite membrane contract and the stability of the membrane is improved by heat treatment. When metal-PVA composite hydrophilic membranes are used to treat the oil/water emulsion with the concentration of 1 000 mg·L -1 , the retention is from 80% to 90%, and the permeate flux is from 15 L·m -2 ·h -1 to 40 L·m -2 ·h -1 at pressure of 0.2 to 0.3 MPa.
文摘Heterogeneous photocatalysis,an advanced oxidation process,has garnered extensive attention in the field of environmental remediation because it involves the direct utilization of solar energy for the removal of numerous pollutants.However,the application of heterogeneous photocatalysis in environmental remediation has not achieved the expected consequences due to enormous challenges such as low photocatalytic efficiencies and high costs of heterogeneous photocatalysts in large-scale practical applications.Furthermore,pollutants in the natural environment,including water,air,and solid phases,are diverse and complex.Therefore,extensive efforts should be made to better understand and apply heterogeneous photocatalysis for environmental remediation.Herein,the fundamentals of heterogeneous photocatalysis for environmental remediation are introduced.Then,potential semiconductors and their modification strategies for environmental photocatalysis are systematically presented.Finally,conclusions and prospects are briefly summarized,and the direction for the future development of environmental photocatalysis is explored.This review may provide reference directions toward understanding,researching,and designing photocatalytic remediation systems for various environmental pollutants.
文摘The modified PVA CA blend ultrafiltration membranes were prepared by phase inversion from the casting solutions consisting of polyvinyl alcohol(PVA), cellulose acetate(CA), acetic acid, alkali metal chloride and water. The effects of different concentration of alkali metal chloride on the properties of membranes were investigated. The results show that when the mass fraction of the salt in the casting solution is not greater than 1%, the property of rejection of the alkali metal salt modified ultrafiltration PVA CA blend membrane has little change compared with that of the unmodified PVA CA blend membrane, but the permeation flux is much greater than that of the unmodified membrane under the same operation condition. When the mass fraction of the salt is greater than 1.5%, the permeate flux increases much greater than that of the unmodified membrane, but the property of rejection of the modified ultrafiltration membrane decreases greatly. The results also show that the contact angle of the salt modified PVA CA blend UF membrane decreases but the swelling in water increases with the increment of the mass fraction of alkali metal salts. Furthermore, the NaCl modified PVA CA blend membrane has a slightly lower swelling and a little smaller contact angle of water than the KCl modified PVA CA blend membrane does when the mass fraction of salts is the same.
基金supported by National Natural Science Foundation of China (Nos.52100032,51838005)Shandong Province Postdoctoral Program for Innovative Talent Support Plan (No.SDBX2022003)the Introduced Innovative R&D Team Project under the“The Pearl River Talent Recruitment Program”of Guangdong Province (2019ZT08L387).
文摘The adsorption of pollutants can not only promote the direct surface reaction,but also modify the catalyst itself to improve its photoelectric characteristics,which is rarely studied for water treatment with inorganic photocatalyst.A highly crystalline BiOBr(c-BiOBr)was synthesized by a two-step preparation process.Owing to the calcination,the highly crystalline enhanced the interface interaction between pollutant and c-BiOBr.The complex of organic pollutant and[Bi_(2)O_(2)]^(2+)could promote the active electron transfer from the adsorbed pollutant to c-BiOBr for the direct pollutant degradation by holes(h^(+)).Moreover,the pollutant adsorption actually modified c-BiOBr and promoted more unpaired electrons,which would coupling with the photoexcitation to promote generate more O_(2)^(•-).The molecular modification effect derived from pollutant adsorption significantly improved the removal of pollutants.This work strongly deepens the understanding of the molecularmodification effect from the pollutant adsorption and develops a novel and efficient approach for water treatment.
基金supported by the National Natural Science Foundation of China (82073509)the National Key Research and Development Program of China (2017YFC0211600,2017YFC0211601).
文摘Previous studies have shown that exposure to black carbon(BC,a tracer of traffic-related air pollution)and psychosocial stress are both associated with adverse cardiac effects,but whether psychosocial stress could modify the cardiac effects of BC is unclear.To investigate the potential modifying effect of psychosocial stress on the associations between acute exposure to BC and typical cardiac health variables,real-time personal 24 h measurements were conducted in a repeated-measure study among adults with elevated blood pressure(high-risk group)and a panel study among normal adults(low-risk group)in China.Measured cardiac health variables included ST-segment depression events,heart rate,and heart rate variability(HRV)variables.Perceived Stress Scale,State Anxiety Inventory and Self-rating Depression Scale were used to assess the recent psychosocial stress status of the participants,and a composite stress index was established based on these scales.Generalized linear mixed-effects model was used to analyze the associations between BC exposure and cardiac health variables and potential effect modification by psychosocial stress.A total of 9724 h measurements among 97 participants in the repeated-measure study and 20224 h measurements among 87 participants in the panel study were included in the final analysis.Acute BC exposure was significantly associated with increased ST-segment depression events and heart rate and decreases in HRV in both studies.The marginal effects of acute BC exposure on most cardiac health variables generally tended to be amplified under higher vs low levels of psychosocial stress in both studies,with the composite stress index apparently modifying the associations of BC exposure with most ST-segment depression events and HRV variables.These findings suggest that psychosocial stress may increase the participants’cardiac susceptibility to BC exposure,which could be helpful for the identification of susceptible individuals in the context of traffic-related air pollution.
基金supported by National Natural Science Foundation of China(Grant No.52270106 and 22266021)Yunnan Major Scientific and Technological Projects(grant No.202202AG050005)Yunnan Fundamental Research Projects(grant No.202201AT070116).
文摘The application of industrial solid wastes as environmentally functional materials for air pollutants control has gained much attention in recent years due to its potential to reduce air pollution in a cost-effective manner.In this review,we investigate the development of industrialwaste-based functional materials for various gas pollutant removal and consider the relevant reaction mechanism according to different types of industrial solid waste.We see a recent effort towards achieving high-performance environmental functional materials via chemical or physical modification,in which the active components,pore size,and phase structure can be altered.The review will discuss the potential of using industrial solid wastes,these modified materials,or synthesized materials from raw waste precursors for the removal of air pollutants,including SO_(2),NO_(x),Hg^(0),H_(2)S,VOCs,and CO_(2).The challenges still need to be addressed to realize this potential and the prospects for future research fully.The suggestions for future directions include determining the optimal composition of these materials,calculating the real reaction rate and turnover frequency,developing effective treatment methods,and establishing chemical component databases of raw industrial solid waste for catalysts/adsorbent preparation.
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.22278318 and 21878230).
文摘Various hydrophilic poly(ethylene-co-vinyl alcohol)(EVOH)were used herein to precisely control the structure and hydrodynamic properties of polysulfone(PSF)membranes.Particularly,to prepare pristine PSF and PSF/EVOH blends with increasing vinyl alcohol(VOH:73%,68%,56%),the non-solvent-induced phase separation(NIPS)technique was used.Polyethylene glycol was used as a compatibilizer and as a porogen in N,Ndimethylacetamide.Rheological and ultrasonic separation kinetic measurements were also carried out to develop an ultrafiltration membrane mechanism.The extracted membrane properties and filtration capabilities were systematically compared to the proposed mechanism.Accordingly,the addition of EVOH led to an increase in the rheology of the dopes.The resulting membranes exhibited a microporous structure,while the finger-like structures became more evident with increasing VOH content.The PSF/EVOH behavior was changed from immediate to delayed segregation due to a change in the hydrodynamic kinetics.Interestingly,the PSF/EVOH32 membranes showed high hydrophilicity and achieved a pure water permeability of 264 L·m^(–2)·h^(–1)·bar^(–1),which was higher than that of pure PSF membranes(171 L·m^(–2)·h^(–1)·bar^(–1)).In addition,PSF/EVOH32 rejected bovine serum albumin at a high rate(>90%)and achieved a significant restoration of permeability.Finally,from the thermodynamic and hydrodynamic results,valuable insights into the selection of hydrophilic copolymers were provided to tailor the membrane structure while improving both the permeability and antifouling performance.
基金supported by the National Natural Science Foundation of China(Nos.21922607 and 22106133)the Outstanding Youth Project of Zhejiang Natural Science Foundation(No.LR19E080004).
文摘In the process of catalytic destruction of chlorinated volatile organic compounds(CVOCs),the catalyst is prone to chlorine poisoning and produce polychlorinated byproducts with high toxicity and persistence,bringing great risk to atmospheric environment and human health.To solve these problems,this work applied phosphate to modify K-OMS-2 catalysts.The physicochemical properties of catalysts were determined by using X-ray powder diffraction(XRD),scanning electron microscope(SEM),X-ray photoelectron spectroscopy(XPS),hydrogen temperature programmed reduction(H_(2)-TPR),pyridine adsorption Fouriertransform infrared(Py-IR)and water temperature programmed desorption(H_(2)O-TPD),and chlorobenzene was selected as a model pollutant to explore the catalytic performance and byproduct inhibition function of phosphating.Experimental results revealed that 1 wt.%phosphate modification yielded the best catalytic activity for chlorobenzene destruction,with the 90%conversion(T90)at approximately 247℃.The phosphating significantly decreased the types and yields of polychlorinated byproducts in effluent.After phosphating,we observed significant hydroxyl groups on catalyst surface,and the active centerwas transformed into Mn(IV)-O…H,which promoted the formation of HCl,and enhanced the dechlorination process.Furthermore,the enriched Lewis acid sites by phosphating profoundly enhanced the deep oxidation ability of the catalyst,which promoted a rapid oxidation of reaction intermediates,so as to reduce byproducts generation.This study provided an effective strategy for inhibiting the toxic byproducts for the catalytic destruction of chlorinated organics.
基金supported by the National Key R&D Program of China (No. 2019YFC1905400)。
文摘This study reports several modification strategies to optimize and enhance the performance of twodimensional(2D) metal organic frameworks(MOFs)-derived catalysts in peroxydisulfate(PDS) activation.The raw 2D Ni-MOF and 2D Ni-Fe-MOF without modification show poor catalytic activities for PDS activation and high metal ion leaching. The carbonization of 2D MOF can increase the activity of the catalyst but cannot solve the metal leaching problem. The further acid treatment of carbonization products can further improve the catalytic activity and decrease the metal ion leaching. The in-situ growth of2D MOF on graphene oxide(GO) support with subsequent carbonization and acid treatment offers the best performance in PDS activation for organic pollutant removal with low metal ion leaching. Compared with other PDS systems, the Ni-Fe-C-acid/GO system displays much lower catalyst and PDS dosages for p-chloroaniline degradation. This study presents new insights in the modification strategies of 2D MOFbased catalysts in PDS activation.
基金financial support of this work by Natural Science Foundation of China(22075031,51673030,51603017 and 51803011)Jilin Provincial Science&Technology Department(20220201105GX)Chang Bai Mountain Scholars Program of Jilin Province.
文摘For the reduction of bovine serum proteins from wastewater,a novel mixed matrix membrane was prepared by functionalizing the substrate material polyaryletherketone(PAEK),followed by carboxyl groups(C-SPAEKS),and then adding amino-functionalized UiO-66-NH_(2)(Am-UiO-66-NH_(2)).Aminofunctionalization of UiO-66 was accomplished by melamine,followed by an amidation reaction to immobilize Am-UiO-66-NH_(2),which was immobilized on the surface of the membrane as well as in the pore channels,which enhanced the hydrophilicity of the membrane surface while increasing the negative potential of the membrane surface.This nanoparticle-loaded ultrafiltration membrane has good permeation performance,with a pure water flux of up to 482.3 L·m^(-2)·h^(-1) for C-SPAEKS/AmUiO-66-NH_(2) and a retention rate of up to 98.7%for bovine serum albumin(BSA)-contaminated solutions.Meanwhile,after several hydrophilic modifications,the flux recovery of BSA contaminants by this series of membranes increased from 56.2%to 80.55%of pure membranes.The results of ultra-filtration flux time tests performed at room temperature showed that the series of ultrafiltration membranes remained relatively stable over a test time of 300 min.Thus,the newly developed mixed matrix membrane showed potential for high efficiency and stability in wastewater treatment containing bovine serum proteins.