期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Medium-Mn steels for hot forming application in the automotive industry 被引量:7
1
作者 Shuo-shuo Li Hai-wen Luo 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第5期741-753,共13页
Advanced high-strength steels have been widely used to improve the crashworthiness and lightweight of vehicles.Different from the popular cold stamping,hot forming of boron-alloyed manganese steels,such as 22MnB5,coul... Advanced high-strength steels have been widely used to improve the crashworthiness and lightweight of vehicles.Different from the popular cold stamping,hot forming of boron-alloyed manganese steels,such as 22MnB5,could produce ultra-high-strength steel parts without springback and with accurate control of dimensions.Moreover,hot-formed medium-Mn steels could have many advantages,including better mechanical properties and lower production cost,over hot-formed 22MnB5.This paper reviews the hot forming process in the automotive industry,hot-formed steel grades,and medium-Mn steel grades and their application in hot forming in depth.In particular,the adaptabilities of medium-Mn steels and the presently popular 22MnB5 into hot forming were compared thoroughly.Future research should focus on the technological issues encountered in hot forming of medium-Mn steels to promote their commercialization. 展开更多
关键词 medium-mn transformation-induced plasticity steel hot forming mechanical properties retained austenite BAKING
下载PDF
Multiphase-field simulation of austenite reversion in medium-Mn steels 被引量:1
2
作者 Yan Ma Rui Zheng +4 位作者 Ziyuan Gao Ulrich Krupp Hai-wen Luo Wenwen Song olfgang Bleck 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第5期847-853,共7页
Medium-Mn steels have attracted immense attention for automotive applications owing to their outstanding combination of high strength and superior ductility.This steel class is generally characterized by an ultrafine-... Medium-Mn steels have attracted immense attention for automotive applications owing to their outstanding combination of high strength and superior ductility.This steel class is generally characterized by an ultrafine-grained duplex microstructure consisting of ferrite and a large amount of austenite.Such a unique microstructure is processed by intercritical annealing,where austenite reversion occurs in a fine martensitic matrix.In the present study,austenite reversion in a medium-Mn alloy was simulated by the multiphase-field approach using the commercial software MICRESS®coupled with the thermodynamic database TCFE8 and the kinetic database MOBFE2.In particular,a faceted anisotropy model was incorporated to replicate the lamellar morphology of reversed austenite.The simulated microstructural morphology and phase transformation kinetics(indicated by the amount of phase)concurred well with experimental observations by scanning electron microscopy and in situ synchrotron high-energy X-ray diffraction,respectively. 展开更多
关键词 medium-mn steels intercritical annealing austenite reversion phase-field simulation faceted anisotropy model
下载PDF
Recent progress in microstructural evolution,mechanical and corrosion properties of medium-Mn steel 被引量:2
3
作者 Yan-xin Qiao Zhi-bin Zheng +2 位作者 Hao-kun Yang Jun Long Pei-xian Han 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2023年第8期1463-1476,共14页
Medium-manganese(Mn)steel(MMS)has remarkable characteristics of high strength,strong work-hardening capacity,and wear resistance,being a promising third-generation advanced high-strength steel with lower raw material ... Medium-manganese(Mn)steel(MMS)has remarkable characteristics of high strength,strong work-hardening capacity,and wear resistance,being a promising third-generation advanced high-strength steel with lower raw material cost compared with other generations of advanced high-strength steel.The chemical composition and processing route play critical roles in determining the microstructural evolution of the MMS,and the microstructure composition significantly influences the mechanical,corrosion and wear properties of the steel.Hence,a lot of research work focus on exploring the direct relation between microstructural evolution and mechanical/corrosion/wear properties,and the progress has the following crucial aspects:(1)alloying design on the phase composition and carbide precipitation,(2)processing route on regulating microstructure evolution and twinning-induced plasticity and/or transformation-induced plasticity strengthening mechanism,(3)work-hardening,corrosion,and corrosion resistance of the regulated MMS,and(4)fracture and failure mechanism of MMS under tensile,corrosion and wear damages,as well as the improvement strategies. 展开更多
关键词 medium-mn steel MICROSTRUCTURE Mechanical property Corrosion property Alloying design Processing route Fracture mechanism
原文传递
Effect of Annealing on Microstructure and Mechanical Properties of Ultrafine-Grained Low-Carbon Medium-Manganese Steel Produced by Heavy Warm Rolling 被引量:2
4
作者 Sohail Ahmad Li-Feng Lv +3 位作者 Li-Ming Fu Huan-Rong Wang Wei Wang Ai-Dang Shan 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2019年第3期361-371,共11页
An ultrafine-grained(UFG) low-carbon medium-manganese steel was fabricated by the heavily warm rolling(HWR) and subsequent quenching, and the effects of annealing temperatures on microstructure and mechanical properti... An ultrafine-grained(UFG) low-carbon medium-manganese steel was fabricated by the heavily warm rolling(HWR) and subsequent quenching, and the effects of annealing temperatures on microstructure and mechanical properties of the UFG HWRed steel were investigated. The results show that the HWRed steel exhibits simultaneous improvements in strength,uniform elongation and work hardening, which is mainly attributed to the refinement of martensitic microstructures. The HWRed steels comprise only a-phase when annealing at lower temperatures below to 550 °C and at higher temperatures above to 700 °C. Whereas, UFG c-austenite is formed by reverse transformation when the HWRed steel was annealed at intermediate temperatures from 550 to 700 °C and the volume fraction increases with increasing annealing temperatures,consequently resulting in a dramatic increase in ductility of the annealed HWRed steels. It was found that the transformed UFG austenite and ferrite remained ~500 nm and ~800 nm in size when the HWRed steel was annealed at 650 and700 °C for 1 h, respectively, showing an excellent thermal stability. Moreover, the HWRed steel annealed at 650 °C exhibits high strength-ductility combinations with a yield strength of 906 MPa, ultimate tensile strength(UTS) of1011 MPa, total elongation(TEL) of 51% and product of strength and elongation(PSE: UTS 9 TEL) of 52 GPa%. It is believed that these excellent comprehensive mechanical properties are closely associated with the UFG austenite formation by reverse transformation and principally attributed to the transformation-induced plasticity(TRIP) effect. 展开更多
关键词 ultrafine-grained medium-mn steel HEAVY WARM rolling ANNEALING Microstructure and properties Transformation-induced plasticity(TRIP) EFFECT
原文传递
Tensile behavior of ultrafine-grained low carbon medium manganese steel by intercritical annealing treatment 被引量:1
5
作者 Sohail Ahmad Zheng Han +3 位作者 Li-ming Fu Huan-rong Wang Wei Wang Ai-dang Shan 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2020年第12期1433-1445,共13页
The intercritical annealing treatment at 650 and 700 ℃ results in two ultrafine-grained (UFG) dual-phase ferrite-austenitesteels. The two steels exhibit different and special discontinuous yielding and pronounced L&#... The intercritical annealing treatment at 650 and 700 ℃ results in two ultrafine-grained (UFG) dual-phase ferrite-austenitesteels. The two steels exhibit different and special discontinuous yielding and pronounced Lüders-like strain phenomenawith large yielding strain which are related to their retained γ-austenite (RA) volume fractions and RA stabilities. The steelannealed at 650 ℃ shows an absent or very small strain hardening, while the steel annealed at 700 ℃ shows an obviousstrain hardening upward curvature with increasing strain. The results show that before and during straining, the steel annealedat 650 ℃ exhibits a mixture of equiaxed and elongated UFG α-ferrite and austenite phases;however, the steel annealed at700 ℃ exhibits only elongated UFG α and γ phases. It was found that most of the γ-austenite to α′-martensite transformationoccurred at the initial deformation stage and very small or almost no transformation occurred afterward. This demonstratesthat the strain-induced martensite (SIM) transformation (γ-α′) or transformation-induced plasticity (TRIP) effect dominatesonly at the initial deformation stage. RA remained stable, and no TRIP effect was observed at the final deformation stage. Theload-unload-reload test was performed to evaluate the back stress (σb) hardening effect. It is believed that the pronouncedstrain hardening behavior at the later deformation stage is mainly associated with σb enhancement induced by the strainpartitioning between the soft and hard phases due to SIM transformation during tensile deformation. 展开更多
关键词 ultrafine-grained dual-phase ferrite-austenite medium-mn steel Annealing Deformation behavior Transformation-induced plasticity effect Back stress hardening
原文传递
Deformation mechanisms for a new medium-Mn steel with 1.1 GPa yield strength and 50% uniform elongation
6
作者 Wei Wang Yanke Liu +6 位作者 Zihan Zhang Muxin Yang Lingling Zhou Jing Wang Ping Jiang Fuping Yuan Xiaolei Wu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第1期110-118,共9页
A new medium-Mn steel was designed to achieve unprecedented tensile properties,with a yield strength beyond 1.1 GPa and a uniform elongation over 50%.The tensile behavior shows a heterogeneous deforma-tion feature,whi... A new medium-Mn steel was designed to achieve unprecedented tensile properties,with a yield strength beyond 1.1 GPa and a uniform elongation over 50%.The tensile behavior shows a heterogeneous deforma-tion feature,which displays a yield drop followed by a large Lüders band strain and several Portevin-Le Châtelier bands.Multiple strain hardening mechanisms for excellent tensile properties were revealed.Firstly,non-uniform martensite transformation occurs only within a localized deformation band,and ini-tiation and propagation of every localized deformation band need only a small amount of martensite transformation,which can provide a persistent and complete transformation-induced-plasticity effect dur-ing a large strain range.Secondly,geometrically necessary dislocations induced from macroscopic strain gradient at the front of localized deformation band and microscopic strain gradient among various phases provide strong heter-deformation-induced hardening.Lastly,martensite formed by displacive shear trans-formation can inherently generate a high density of mobile screw dislocations,and interstitial C atoms segregated at phase boundaries and enriched in austenite play a vital role in the dislocation multipli-cation due to the dynamic strain aging effect,and these two effects provide a high density of mobile dislocations for strong strain hardening. 展开更多
关键词 medium-mn steel Strain hardening DUCTILITY Martensite transformation Strain gradient Mobile dislocations
原文传递
Roles of Al in enhancing the thermal stability of reverted austenite and mechanical properties of a medium-Mn TRIP steel containing 2.7 Mn
7
作者 Wenlu Yu Lihe Qian +6 位作者 Xu Peng Tongliang Wang Kaifang Li Chaozhang Wei Zhaoxiang Chen Fucheng Zhang Jiangying Meng 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第36期119-136,共18页
Often,the addition of more than 4 wt.%Mn to medium-Mn steels is necessary to enhance the thermal stability of intercritical austenite for achieving sufficient amounts of retained austenite(RA)at room tem-perature.In t... Often,the addition of more than 4 wt.%Mn to medium-Mn steels is necessary to enhance the thermal stability of intercritical austenite for achieving sufficient amounts of retained austenite(RA)at room tem-perature.In this paper,a medium-Mn steel with Mn content as low as 2.7 wt.%was designed via alloying with a small amount of Al,and the microstructure and mechanical properties of the steel,subjected to intercritical annealing(IA)at 745°C for different times followed by oil quenching,were investigated.Results show that the volume fraction of RA increases first and then decreases with IA time,with the maximum of 0.36 obtained at IA time of 50 min.It is demonstrated that Al addition slows down the in-terface migration and growth kinetics of reverted austenite via retarding C diffusion in ferrite during IA,which,hence,decreases the amount and size of the reverted austenite and partitions more C and Mn into it.This suggests that Al plays a favorable role in enhancing the thermal stability of reverted austenite and increasing the amount of austenite retained at room temperature.Due to the presence of large amounts of RA and the strong transformation-induced plasticity effect generated during plastic deformation,the steel exhibits persistent high strain hardening and superior mechanical properties,comparable to those of reported medium-Mn steels containing higher Mn content.The present result offers a new insight into the role of Al in adjusting microstructure-property relationships and opens a promising way for designing low-cost,high performance medium-Mn steels with low Mn content for industrial applications. 展开更多
关键词 medium-mn steel Transformation-induced plasticity Transformation kinetics Austenite thermal stability Mechanical properties
原文传递
Microstructure Evolution and Microhardness of Ultrafine-grained High Carbon Steel during Multiple Laser Shock Processing 被引量:2
8
作者 Yi XIONG Tian-tian HE +3 位作者 Feng-zhang REN Peng-yan LI Lu-fei CHEN Alex A.VOLINSKY 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2015年第1期55-59,共5页
Surface microstructure and microhardness of (ferrite+ cementite) microduplex structure of the ultrafine- grained high carbon steel after laser shock processing (LSP) with different impact times were investigated ... Surface microstructure and microhardness of (ferrite+ cementite) microduplex structure of the ultrafine- grained high carbon steel after laser shock processing (LSP) with different impact times were investigated by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and microhardness measurements. Equiaxed ferrite grains were refined from 400 to 150 nm, and the cementite lamellae were fully spheroidized, with a decrease of the particle diameter from 150 to 100 nm as the impact times increased. The cementite dissolution was enhanced significantly. Correspondingly, the lattice parameter of α-Fe and microhard- hess increased with the impact times. 展开更多
关键词 ultrafine-grained high carbon steel laser shock processing impact times MICROSTRUCTURE MICROHARDNESS
原文传递
Effect of martensitic transformation on nano/ultrafine-grained structure in 304 austenitic stainless steel 被引量:1
9
作者 Na Gong Hui-bin Wu +3 位作者 Gang Niu Jia-ming Cao Da Zhang Tana 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2017年第12期1231-1237,共7页
304 austenitic stainless steel was cold rolled in the range of 20%-80%reductions and then annealed at 700-900°C for 60 sto obtain nano/ultrafine-grained(NG/UFG)structure.Transmission electron microscopy,electro... 304 austenitic stainless steel was cold rolled in the range of 20%-80%reductions and then annealed at 700-900°C for 60 sto obtain nano/ultrafine-grained(NG/UFG)structure.Transmission electron microscopy,electron backscatter diffraction and X-ray diffraction were used to characterize the resulting microstructures.The results showed that with the increase of cold reduction,the content of martensite was increased.The steel performed work hardening during cold-working owing to the occurrence of strain induced martensite which nucleated in single shear bands.Further rolling broke up the lath-type martensite into dislocation-cell type martensite because of the formation of slip bands.Samples annealed at 800-960°C for 60 swere of NG/UFG structure with different percentage of nanocrystalline(60-100 nm)and ultrafine(100-500 nm)grains,submicron size(500-1000 nm)grains and micron size(〉1000 nm)grains.The value of the Gibbs free energy exhibited that the reversion mechanism of the reversion process was shear controlled by the annealing temperature.For a certain annealing time during the reversion process,austenite nucleated first on dislocation-cell type martensite and the grains grew up subsequently and eventually to be micrometer/submicrometer grains,while the nucleation of austenite on lath-type martensite occurred later resulting in nanocrystalline/ultrafine grains.The existence of the NG/UFG structure led to a higher strength and toughness during tensile test. 展开更多
关键词 304 austenitic stainless steel Nano/ultrafine-grained structure Reversion mechanism Lath-type martensite Dislocation-cell type martensite Martensitic transformation
原文传递
The microstructure evolution and tensile properties of medium-Mn steel heat-treated by a two-step annealing process 被引量:11
10
作者 D.P.Yang P.J.Du +1 位作者 D.Wu H.L.Yi 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第16期205-215,共11页
The martensitic hot-rolled 0.3 C-6 Mn-1.5 Si(wt%)steel was annealed at 630℃for 24 h to improve its cold rollability,followed by cold rolling and annealing at 670℃for 10 min.The annealing process was designed based o... The martensitic hot-rolled 0.3 C-6 Mn-1.5 Si(wt%)steel was annealed at 630℃for 24 h to improve its cold rollability,followed by cold rolling and annealing at 670℃for 10 min.The annealing process was designed based on the capacities of industrial batch annealing and continuous annealing lines.A duplex submicron austenite and ferrite microstructure and excellent tensile properties were obtained finally,proved the above process is feasible."Austenite memory"was found in the hot-rolled and annealed sample which restricted recrystallization of lath martensite,leading to lath-shaped morphology of austenite and ferrite grains."Austenite memory"disappeared in the cold-rolled and annealed sample due to austenite random nucleation and ferrite recrystallization,resulting in globular microstructure and refinement of both austenite and ferrite grains.The austenite to martensite transformation contributed most of strain hardening during deformation and improved the uniform elongation,but the dislocation strengthening played a decisive role on the yielding behavior.The tensile curves change from continuous to discontinuous yielding as the increase of cold-rolled reduction due to the weakening dislocation strengthening of austenite and ferrite grains related to the morphology change and grain refinement.A method by controlling the cold-rolled reduction is proposed to avoid the Lüders strain. 展开更多
关键词 medium-mn steel Intercritical annealing Austenite memory Yielding behavior TRIP effect
原文传递
Deformation-induced martensitic transformation kinetics and correlative micromechanical behavior of medium-Mn transformation-induced plasticity steel 被引量:5
11
作者 Minghe Zhang Haiyang Chen +4 位作者 Youkang Wang Shengjie Wang Runguang Li Shilei Li Yan-Dong Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第8期1779-1786,共8页
An in situ high-energy X-ray diffraction(HE-XRD) technique was mainly used to investigate the micromechanical behavior of medium-Mn Fe-0.12 C-10.16 Mn-1.87 Al(in wt%) transformation-induced plasticit(TRIP) steel subje... An in situ high-energy X-ray diffraction(HE-XRD) technique was mainly used to investigate the micromechanical behavior of medium-Mn Fe-0.12 C-10.16 Mn-1.87 Al(in wt%) transformation-induced plasticit(TRIP) steel subjected to intercritical annealing at 625℃, 650℃, 675℃ and 700℃ for 1 h. As the intercritical annealing temperature increased, the volume fraction of retained austenite(RA) and ultimate tensilstress(UTS) increased, while the Lüders strain and yield stress(YS) decreased. The incremental workhardening exponent of experimental steel increased with increasing intercritical annealing temperatureThe overall trend of the transformation kinetics of the RA with respect to the true strain followed thsigmoidal shape predicted by the Olson and Cohen(OC) model. Load partitioning occurred among the ferrite, austenite and martensite immediately after entering the yielding stage. Because the stability of thRA decreased with increasing intercritical annealing temperature, the load undertaken by the martensitincreased. The moderate transformation kinetics of the RA and effective load partitioning among constituent phases were found to contribute to a favorable combination of strength and ductility for thimedium-Mn TRIP steel. 展开更多
关键词 medium-mn TRIP steel HIGH-ENERGY X-ray DIFFRACTION Transformation kinetics Load partitioning
原文传递
Improvement of Mechanical Properties of a Medium-Mn TRIP Steel by Precursor Microstructure Control 被引量:3
12
作者 Bao-Jia Hu Qin-Yuan Zheng +4 位作者 Chun-Ni Jia Peng Liu Yi-Kun Luan Cheng-Wu Zheng Dian-Zhong Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2022年第7期1068-1078,共11页
An approach of optimizing the intercritical annealing path in a 0.2C-5Mn medium-Mn steel is presented by introducing precursor microstructure prior to normal austenite reverted transformation(ART)annealing.The steel i... An approach of optimizing the intercritical annealing path in a 0.2C-5Mn medium-Mn steel is presented by introducing precursor microstructure prior to normal austenite reverted transformation(ART)annealing.The steel is fi rstly pre-annealed at diff erent intercritical temperatures to form designed precursor microstructures.Then,they are employed for subsequent conventional ART annealing processing.It is found that pre-annealing at relative high intercritical temperatures can promote precipitation and dissolution of the carbide in the steel and re-distribute the C and Mn in the microstructures.The produced microstructural precursors show excellent merits in accelerating the austenite reversions in subsequent normal ART processing and assisting the RA formation.Tensile testing reveals that the excellent strength-elongation balance can be achieved in the heat-treated samples using diff erent microstructural precursors,which suggests the potential applicability in producing the medium-Mn steels with shortened processing period. 展开更多
关键词 medium-mn steel Austenite reversion Retained austenite Precursor microstructure Mechanical properties
原文传递
Microstructure and mechanical properties of hot-rolled V-microalloyed Al-containing medium-Mn steel 被引量:1
13
作者 Ming Lei Wei-jun Hui +2 位作者 Jiao-jiao Wang Yong-jian Zhang Xiao-li Zhao 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2020年第5期537-548,共12页
The microstructure and mechanical properties of a V-microalloyed Al-containing medium-Mn steel after hot rolling and intercritical annealing(IA)are explored.The tested steel exhibits a fne multiphase microstructure co... The microstructure and mechanical properties of a V-microalloyed Al-containing medium-Mn steel after hot rolling and intercritical annealing(IA)are explored.The tested steel exhibits a fne multiphase microstructure consisting of bimodal sizes of ferrite and retained austenite plus considerable amount of fne VC and/or M3C precipitates.Physical-chemical phase analysis shows that about 71.0%of the total V is in VC phase and more than 93%of VC particles is less than 5 nm.The calculated precipitation strengthening values of VC are^347 and^234 MPa for the specimens intercritically annealed at 625 and 750℃,respectively.An excellent combination of strength and ductility as high as^50 GPa%and yield strength(YS)of 890 MPa was obtained at intercritical temperature(TIA)of 725℃,although it does not correspond to the maximum precipitation strengthening of VC phase.Therefore,it is suggested that an optimization of TIA corresponding to both excellent combination of strength and ductility and high YS should be further explored through chemical composition and IA process optimization. 展开更多
关键词 medium-mn steel VANADIUM Intercritical annealing MICROSTRUCTURE Mechanical property
原文传递
Effect of microstructure evolution on Luders strain and tensile properties in an intercritical annealing medium-Mn steel
14
作者 Shuai Wang Wei-jian Chen +3 位作者 Zheng-zhi Zhao Xiao-long Zhao Xiao-yang Luo Qiang Wang 《Journal of Iron and Steel Research(International)》 SCIE EI CSCD 2021年第6期762-772,共11页
The influence of microstructural characteristics on Lu¨ders strain and mechanical properties was explored by means of altering thermo-mechanical circumstances in an intercritical annealing(IA)medium-Mn Fe-11Mn-0.... The influence of microstructural characteristics on Lu¨ders strain and mechanical properties was explored by means of altering thermo-mechanical circumstances in an intercritical annealing(IA)medium-Mn Fe-11Mn-0.09C-0.25Si(wt.%)steel.By IA of cold-rolled samples with severe plastic deformation,exclusively equiaxed dual phases were obtained because of active recovery and recrystallization.The equiaxed austenite(gamma E)with a larger size and inadequate chemical concentration was more readily transformed into martensite,and subsequent transformation-induced plasticity(TRIP)effect was triggered actively at relatively higher IA temperature,lessening localized deformation.In addition,grown-in dislocations were prone to multiply and migrate around a broad mean free path for coarser equiaxed ferrite(alpha E)due to weakening dynamic recovery;therefore,it was the ensuing increased mobility of dislocations instead of reserving plentiful initial dislocation density that facilitated the propagation velocity of Luders bands and the accumulation of work hardening.In contrast,the bimodal-grained microstructure with lath-like and equiaxed austenite(gamma L+gamma E)satisfactorily contributed to a smaller yield point elongation(YPE)without compromise of comprehensive mechanical properties on the grounds that austenitic gradient stability gave rise to discontinuous but sustainable TRIP effect and incremental work hardening.Hence,Luders strain is closely related to the absence of work hardening in the region which yields locally.It follows that the decreased stability of retained austenite,favorable mobility of dislocations and the bimodal-grained structure all prominently make up for the insufficiency of work hardening,thereof resulting in a limited YPE. 展开更多
关键词 Luders strain medium-mn steel Work hardening DISLOCATION Mechanical property
原文传递
High Ductility and Toughness of a Micro-duplex Medium-Mn Steel in a Large Temperature Range from—196 ℃ to 200 ℃
15
作者 Si-lian CHEN Jun HU +2 位作者 Xiao-dan ZHANG Han DONG Wen-quan CAO 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2015年第12期1126-1130,共5页
A medium-Mn steel (0.2C5Mn) was processed by intercritical annealing at different temperatures (625 ℃ and 650 ℃ ). An ultrafine-grained micro-duplex structure consisting of alternating austenite and ferrite lath... A medium-Mn steel (0.2C5Mn) was processed by intercritical annealing at different temperatures (625 ℃ and 650 ℃ ). An ultrafine-grained micro-duplex structure consisting of alternating austenite and ferrite laths was de- veloped by austenite reverse transformation (ART) during intercritical annealing after forging and hot rolling. Ultra- high ductility with a total elongation higher than 30% was achieved in the temperature range from -196 ℃ to 200 ℃, and high impact toughness no less than 200 J at -40 ℃ was obtained. Based on the analysis of microstructure and mechanical properties, it was found that the enhanced ductility was determined by the phase transformation effect of austenite (TRIP effect), while the delayed ductile to brittle transition was controlled by austenite stability. 展开更多
关键词 high strength high ductility intercritical annealing medium-mn steel ultrafine grain size
原文传递
Improving toughness of medium-Mn steels after friction stir welding through grain morphology tuning
16
作者 Mun Sik Jeong Tak Min Park +5 位作者 Dong-Il Kim Hidetoshi Fujii Hye Ji Im Pyuck-Pa Choi Seung-Joon Lee Jeongho Han 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第23期243-254,共12页
This work demonstrated the viability of friction stir welding for the welding of medium-Mn steels when used as cryogenic vessel materials for liquefied gas storage.We used an intercritically annealed Fe-7 Mn-0.2 C-3 A... This work demonstrated the viability of friction stir welding for the welding of medium-Mn steels when used as cryogenic vessel materials for liquefied gas storage.We used an intercritically annealed Fe-7 Mn-0.2 C-3 Al(wt.%)steel with a dual-phase(α'martensite andγ_(R) retained austenite)nanolaminate structure as a base material and systematically compared its microstructure and impact toughness after friction stir and tungsten inert gas welding.The friction stir welded specimen exhibited a large amount ofγ_(R) phase owing to a relatively low temperature during welding,whereas the tungsten inert gas welded specimen comprised only theα'phase.Furthermore,the friction stir welded steel exhibited a tuned morphology of nanoscale globular microstructure at the weld zone and did not exhibit any prior austenite grain boundary due to active recrystallization caused by deformation during welding.The preserved fraction ofγ_(R) and morphological tuning in the weldment improved the impact toughness of the friction stir welded steel at low temperatures.In the steel processed by tungsten inert gas welding,the notch crack propagated rapidly along the prior austenite grain boundaries-weakened by Mn and P segregations-resulting in poor impact toughness.However,the friction stir welded steel exhibited a higher resistance against notch crack propagation due to the slow crack propagation along the ultrafine ferrite/ferrite(α/α)interfaces,damage tolerance by the active transformation-induced plasticity from the large amount ofγR,and enhanced boundary cohesion by suppressed Mn and P segregations. 展开更多
关键词 Charpy impact test Transformation-induced plasticity Friction stir welding Phase stability medium-mn steel
原文传递
Evaluation of hydrogen effect on the fatigue crack growth behavior of medium-Mn steels via in-situ hydrogen plasma charging in an environmental scanning electron microscope
17
作者 Di Wan Yan Ma +4 位作者 Binhan Sun Seyed Mohammad Javad Razavi Dong Wang Xu Lu Wenwen Song 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第26期30-43,共14页
Fatigue crack growth(FCG)tests were conducted on a medium-Mn steel annealed at two intercritical annealing temperatures,resulting in different austenite(γ)to fe rrite(α)phase fractions and differentγ(meta-)stabilit... Fatigue crack growth(FCG)tests were conducted on a medium-Mn steel annealed at two intercritical annealing temperatures,resulting in different austenite(γ)to fe rrite(α)phase fractions and differentγ(meta-)stabilities.Novel in-situ hydrogen plasma charging was combined with in-situ cyclic loading in an environmental scanning electron microscope(ESEM).The in-situ hydrogen plasma cha rging increased the fatigue crack growth rate(FCGR)by up to two times in comparison with the reference tests in vacuum.Fractographic investigations showed a brittle-like crack growth or boundary cracking manner in the hydrogen environment while a ductile transgranular manner in vacuum.For both materials,the plastic deformation zone showed a reduced size along the hydrogen-influenced fracture path in comparison with that in vacuum.The difference in the hydrogen-assisted FCG of the medium-Mn steel with different microstructures was explained in terms of phase fraction,phase stability,yielding strength and hydrogen distribution.This refined study can help to understand the FCG mechanism without or with hydrogen under in-situ hydrogen charging conditions and can provide some insights from the applications point of view. 展开更多
关键词 Hydrogen embrittlement Fatigue crack growth(FCG) Electron channeling contrast imaging(ECCI) medium-mn steel Hydrogen plasma
原文传递
Hot Deformation Behavior and Processing Maps of a Medium Manganese TRIP Steel 被引量:1
18
作者 Ning Yan Hong-Shuang Di +2 位作者 Hui-Qiang Huang R.D.K.Misra Yong-Gang Deng 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2019年第8期1021-1031,共11页
The hot deformation behavior of a medium-Mn steel was studied in terms of hot compression flow curves in the temperature range of 850–1050 ℃ and strain rates of 0.05–10 s-1.The thermo-mechanical analysis was carrie... The hot deformation behavior of a medium-Mn steel was studied in terms of hot compression flow curves in the temperature range of 850–1050 ℃ and strain rates of 0.05–10 s-1.The thermo-mechanical analysis was carried out and suggested that the microstructure during deformation was completely austenite which had high tendency for dynamic recrystallization(DRX).The flow behavior was characterized by significant flow softening at deformation temperatures of 950–1050 ℃ and lower strain rates of 0.05–5 s-1, which was attributed to heating during deformation, DRX and flow instability.A step-by-step calculating procedure for constitutive equations is proposed.The verification of the modified equations indicated that the developed constitutive models could accurately describe the flow softening behavior of studied steel.Additionally, according to the processing maps and microstructure analysis, it suggested that hot working of medium Mn steel should be carried out at 1050 ℃, and the strain rate of 0.05–10 s-1 resulted in significantly recrystallized microstructures in the in steel.The flow localization is mainly flow instability mechanism for experimental steel. 展开更多
关键词 medium-mn steel Hot deformation behavior CONSTITUTIVE EQUATIONS Flow INSTABILITY mechanism Recrystallized microstructure
原文传递
Impacts of multiple laser shock processing on microstructure and mechanical property of high-carbon steel
19
作者 Yi Xiong Tian-tian He +5 位作者 Yan Lu Han-sheng Bao Yong Li Feng-zhang Ren Wei Cao Alex A. Volinsky 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2018年第4期469-475,共7页
Multiple laser shock processing (LSP) impacts on microstructures and mechanical properties were investigated through morphological determinations and hardness testing. Microscopic results show that without equal cha... Multiple laser shock processing (LSP) impacts on microstructures and mechanical properties were investigated through morphological determinations and hardness testing. Microscopic results show that without equal channel angular pressing (ECAP), the LSP-treated lamellar pearlite was transferred to irregular ferrite matrix and incompletely broken cementite particles. With ECAP, LSP leads to refinements of the equiaxed ferrite grain in ultrafine-grained microduplex structure from 400 to 150 nm, and the completely spheroidized cementite particles from 150 to 100 nm. Consequentially, enhancements of mechanical properties were found in strength, microhardness and elongations of samples consisting of lamellar pearlite and ultrafine-grained microduplex structure. After LSP, a mixture of quasi-cleavage and ductile fracture was formed, different from the typical quasi-cleavage fracture from the original lamellar pearlite and the ductile fracture of the microduplex structure. 展开更多
关键词 Laser shock processing High-carbon steel ultrafine-grained microduplex structure Mechanical property
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部