A suite of ultramafic and mafic rocks developed in the Chigu Tso area,eastern Tethyan Himalaya.Baddeleyite and zircon U-Pb ages acquired by SIMS and LA-ICP-MS from olivine pyroxenite rocks in the Chigu Tso area are 13...A suite of ultramafic and mafic rocks developed in the Chigu Tso area,eastern Tethyan Himalaya.Baddeleyite and zircon U-Pb ages acquired by SIMS and LA-ICP-MS from olivine pyroxenite rocks in the Chigu Tso area are 138.9±3.0 Ma and 139.0±1.9 Ma,respectively.These two Early Cretaceous ages are similar with the ages of the more abundant mafic rocks in the eastern Tethyan Himalaya,indicating that this suite of ultramafic and mafic rocks in the Chigu Tso area should be included in the outcrop area of the Comei Large Igneous Province(LIP).These ultramafic rocks provide significant evidence that the involvement of mantle plume/hot spot activities in the formation of the Comei LIP.Baddeleyite U-Pb dating by SIMS is one reliable and convenient method to constrain the formation time of ultramafic rocks.The dating results of baddeleyite and zircon from the olivine pyroxenite samples in this paper are consistent with each other within analytical uncertainties,suggesting that baddeleyite and zircon were both formed during the same magmatic process.The consistency of baddeleyite U-Pb ages in the Chigu Tso area with zircon U-Pb ages for a large number of Early Cretaceous mafic rocks in the eastern Tethyan Himalaya further support that zircon grains from such mafic rocks yielding Early Cretaceous ages are also magmatic in origin.展开更多
Ultramafic rocks of Tibet and Xinjiang are the products of partial melting of the upper mantle. The evolution of their mineral composition is marked by two parallel evolutionary series: one is the progressive increase...Ultramafic rocks of Tibet and Xinjiang are the products of partial melting of the upper mantle. The evolution of their mineral composition is marked by two parallel evolutionary series: one is the progressive increase of the 100 Mg/(Mg+Fe^(2+) ratio of silicate minerals in order of lherzolite→harzburgite→dunite, i.e. the increase in magnesium; the other is the increase of the 100 Cr/(Cr+Al) ratio of accessory chrome spinel in the same order, i. e. the increase in Chromium. The above-mentioned evolutionary trends are contrary to that of magmatic differentiation. The evolution of fabrics of ultramafic rocks is characterized by progressive variation in order of protogranular texture→melted residual texture, symplectic texture and clastophyritic texture→equigranular mosaic texture and tabular mosaic texture. Experiments of partial melting of lherzolite have convincingly shown that the evolution of Alpine ultramafic rocks resulted from the partial melting of pyrolite. Various subtypes of them represent different degrees of partial melting. The vertical zoning marked by more basic rocks in the upper part and more acid rocks in the lower actually belongs to the fusion zoning of pyrolite.展开更多
Evidence for a mantle and/or basaltic component in KT boundary distal ejecta is apparently inconsistent with ejection from Chicxulub Crater since it is located on;5km thick continental crust(De Paolo et al.,1983;Mont...Evidence for a mantle and/or basaltic component in KT boundary distal ejecta is apparently inconsistent with ejection from Chicxulub Crater since it is located on;5km thick continental crust(De Paolo et al.,1983;Montanari et al.,1983;Hildebrand and Boynton,1988,1990).Evidence for mafic/ultramafic target rocks was reinforced by discovery of chromites,some with shock planar deformation features(PDF),in impact layer samples from sites in southern Colorado and eastern Wyoming(Bohor et al.,1990).However,until now it was unclear whether the chromites originated with an impactor or with terrestrial target rocks.To this end,high-precision 54Cr/52Cr isotope ratios were measured on KT boundary chromites along with known terrestrial chromites.We find a terrestrial 54Cr/52Cr ratio in KT boundary chromites from impact layer samples collected at the above sites over the last several years(Fig.1).Ejected terrestrial chromites suggest the impact sampled terrestrial mafic and/or ultramafic target rocks not known to exist in the Chicxulub target area.展开更多
The Kabr El-Bonaya mafic–ultramafic intrusion is exposed along the southeastern border of the Sinai Peninsula and the northernmost segment of the Arabian-Nubian Shield(ANS).It occurs as an elliptical intrusive body t...The Kabr El-Bonaya mafic–ultramafic intrusion is exposed along the southeastern border of the Sinai Peninsula and the northernmost segment of the Arabian-Nubian Shield(ANS).It occurs as an elliptical intrusive body that is located along the major NE–SW trending fracture zones that prevail in the Kid metamorphic complex.The ultramafic rocks in the complex comprise ultramafic cumulates of peridotites(dunite,harzburgite and wehrlite)and pyroxenite.These rocks are generally unmetamorphosed and have intrusive contacts with the country rock.Mineral chemistry and whole-rock chemical compositions of these ultramafic rocks are mostly consistent with those of residual mantle peridotites from refractory suprasubduction tectonic settings.Based on the variations of the major elements,the studied ultramafic rocks are consistent with those of a supra-subduction zone mantle,as it seems to have melted at 1–2 GPa and 1300–1450℃.Linear variations of Al2O3,Ca O,V and Ni with Mg O,coupled with incompatible and rare-earth-element depletion and mineral compositions,suggest prior events of partial melting in both wehrlites and harzburgites.The LREE enrichment in the harzburgite,as well as the development of Cr-rich spinel,is consistent with a history of melt–peridotite interaction.The calculated(Sm/Yb)N variations for the studied peridotites indicate a general increase in the addition of fluids with an increasing degree of melting from the wehrlite(~13–15 wt%of fluid)in the source,after initial spinel peridotite melting to the harzburgite(~20–25 wt%of fluid)in the same source,which is contrary to normal abyssal peridotites.The estimated equilibration temperature ranges from 1214 to 1321℃for the studied wehrlites and from 1297 to 1374℃for harzburgites.The Mg-rich nature of the analysed olivines from the studied ultramafic rocks(Fo=81.41 to 91.77)reflect their primary composition and are similar to olivines in Alaskan-type ultramafic rocks.The Fo content of the analyzed olivines decrease slightly from the dunite to the harzburgite to the wehrlite and to pyroxenite,reflecting a fractional crystallization trend.The high Cr#and very low TiO_(2)contents(0.03–0.12 wt%)of the Cr-spinels from the studied peridotites are mostly consistent with modern highly refractory fore-arc peridotites,indicating that these peridotites developed in a supra-subduction zone environment.展开更多
In its cationic,trivalent form,Chromium(Cr)it is a micronutrient,and exhibits low environmental mobility.In hexavalent form,however,it is a human carcinogen and also highly mobile.Climate is a key environmental factor...In its cationic,trivalent form,Chromium(Cr)it is a micronutrient,and exhibits low environmental mobility.In hexavalent form,however,it is a human carcinogen and also highly mobile.Climate is a key environmental factor controlling weathering rates and stability of primary and secondary Cr-bearing minerals.Knowledge of Cr oxidation state and mineral residence is therefore essential to estimating the risk posed by Cr in serpentinites,chromite mine wastes,and soils developed on these parent materials.X-ray absorption spectroscopy(XAS)is currently the best available technique for determination of the relative abundance of Cr(III)and Cr(VI)in situ(that is,without digestion of solid phases).A brief review of relevant XAS studies of is presented below,focusing on studies in tropical climates1,as they will be most relevant to eastern Cuba’s extensively serpentinized ophiolite belt.Cr(III)-bearing spinels are usually the dominant and most refractory Cr host in ultramafic rocks.Previous XAS studies2 indicate that in tropical climates,Cr-spinels weather rapidly to form Cr(III)-bearing secondary Fe(III)(hydr)oxides(goethite,hematite).Manganese(Mn)is also enriched in ultramafic rocks2;as Mn(IV),it can also co-precipitate with Fe(III)(hydr)oxides,or form its own secondary(hydr)oxides.A previous study found up to 20%Cr(VI)in in a tropical,serpentine soil that contained substantial Mn,and a strong correlation between the*amounts of Cr(VI)and Mn(IV)in the soil profile2.Theresults of several XAS studies suggest that a close association of Mn(IV)and Cr(III)in secondary Fe(hydr)oxides is necessary for oxidation of Cr(III)to Cr(VI)via electron transfer reactions with Mn(IV);however,additional XAS studies have shown that organic matter3and Cr-bearing aluminosilicates4 may also be important sources of Cr(III)to the environment under specific conditions.The stability and fate of Cr has not been studied in detail for these two host phase types,to the best of our knowledge.Access to XAS facilities to perform Cr geochemical experiments is limited and will only become more so in the future.We are working to develop and apply(micro)Raman spectroscopy to evaluate Cr oxidation state and mineral residence(in crystalline and amorphous materials).In addition to standard Raman scattering,we are employing resonance Raman(785 nm laser)to enhance signal from Cr(VI)-bearing phases and laser-stimulated photoluminescence to identify Cr(III)associated with Al-rich alteration products展开更多
Most chrysotile deposits occur in ultramafic rocks of the ophiolite suite. The chrysotile deposits dis-cussed in the present paper were formed through metasomatism and infilling-crystallization in a continentalserpent...Most chrysotile deposits occur in ultramafic rocks of the ophiolite suite. The chrysotile deposits dis-cussed in the present paper were formed through metasomatism and infilling-crystallization in a continentalserpentinization environment after plate convergence, where ultramafic rocks were replaced byhydrothermal solutions consisting mainly of deep-circulating heated water derived from atmospheric precip-itation. The critical state for the formation of asbestos in ultramafic rock bodies might be reached bysuperposition of multiple stages of serpentinization. Favourable fracture systems and relatively stable geo-logical environment are important conditions for forming chrysotile deposits. Three subtypes of chrysotiledeposits could be formed in different tectonic settings and under different minerogenic geochemical condi-tions.展开更多
The high-MgO ultramafic volcanic rocks in the NW Ad Dhala province are classified as meimechite according to the IUGS classification scheme.This province represents the southeastern outcrops of the Yemen Volcanic Grou...The high-MgO ultramafic volcanic rocks in the NW Ad Dhala province are classified as meimechite according to the IUGS classification scheme.This province represents the southeastern outcrops of the Yemen Volcanic Group(YVG),which constitutes part of the AfroArabian continental large igneous province(LIP) and located within the boundary of the Afar mantle plume.In this study,we present the chemical compositions of olivine and Cr-spinel in meimechite rocks from Bagah Village in NW Ad Dhala province,aiming to characterize the genesis and partial melting conditions and to estimate the crystallization temperatures of these high-MgO rocks.Olivine crystals are characterized by high forsterite,ranges from Mg-rich core(up to Fo_(89.69)) to relatively Fe-rich rim(down to Fo_(78.57)),high CaO,MgO and MnO whereas Cr-spinel crystals have high TiO_(2) and Cr# values ranging from 0.49 to 0.63 which indicate that they are crystallized from primary magma and are typical of volcanic olivine and Crspinel that formed in intraplate tectonic setting.Olivine and Cr-spinel compositional data and primary melt composition(MgO ~ 23 wt.%) are compatible with the derivation of studied meimechite rocks from peridotite mantle source by small degrees of partial melting under conditions of high temperature and pressure at great depths,mostly within the garnet stability field.Also,these data provide a compelling indicator for the important role of upwelling Afar mantle plume in the genesis of these high-MgO ultramafic volcanic rocks.Finally,based on the different olivine-liquid equilibrium methods and Al-in-olivine thermometer approach the estimated crystallization temperature ranges from 1450 to 1490℃,and mantle potential temperature(Tp) ranges from 1617 to 1677℃,at high pressure(3-4.8 GPa).These high temperatures substantiate the existence of the Afar thermal mantle plume and its important role in the genesis of the studied meimechite rocks.展开更多
The Neoarchean StorøSupracrustal Belt in SW Greenland comprises a sequence of mature quartzite,metapelite,amphibolite,and ultramafic rocks that underwent amphibolite facies metamorphism during the amalgamation of...The Neoarchean StorøSupracrustal Belt in SW Greenland comprises a sequence of mature quartzite,metapelite,amphibolite,and ultramafic rocks that underwent amphibolite facies metamorphism during the amalgamation of the Mesoarchean Akia Terrane and the Eoarchean Færingehavn Terrane.In this belt,tourmaline is found in a transition zone between ultramafic and metapelitic rocks,but also occurs as orbicules within the ultramafic rocks.These tourmaline orbicules hosted by ultramafic rocks are reported for the first time in the North Atlantic craton,thus indicating a unique formation mechanism.We conducted a comprehensive examination of the petrology,whole-rock and mineral chemistry,and oxygen isotope compositions from borehole samples in the StorøSupracrustal Belt,to elucidate the metasomatic events associated with the formation of the orbicular tourmalines.The Storøultramafic rocks have high MgO,Cr,and Ni contents,with low abundances of REE and HFSE,and preserve a typical cumulate texture.These features are similar to those of ultramafic cumulates found in other Archean supracrustal belts,suggesting a cumulate origin for the Storøultramafic rocks.Furthermore,the morphology and composition of the tourmaline orbicules within these cumulates indicate that they originated from melts with high boron and high water concentrations that infiltrated the ultramafic rocks.The main factor influencing the morphology of the tourmaline orbicules is the silicification of the ultramafic rocks,driven by their lower chemical potential of SiO_(2)compared to the surrounding rocks.This silicification process,in combination with compositional variations of cumulates during fractional crystallization,has contributed to the geochemical diversity observed in Archean ultramafic rocks.Thus,it is crucial to understand the effects of such selective metasomatism on Archean ultramafic rocks,as this will facilitate the extraction of original information preserved in the early rock record.展开更多
China has abundant reserves of magnesite, making it the world’s leading source of this strategic mineral.Sparry magnesite is the main type of magnesite deposit, and is easy to exploit.It occurs mainly as the sediment...China has abundant reserves of magnesite, making it the world’s leading source of this strategic mineral.Sparry magnesite is the main type of magnesite deposit, and is easy to exploit.It occurs mainly as the sedimentary-metamorphic type.Production is centred on eastern Liaoning Province, where a world-class large to super large magnesite ore processing and production facility has been developed.Hydrothermal metasomatic deposits, associated with ultramafic complexes and eluvial deposits produced by weathering, are two other important types found in China.The Western section of the Bangonghu-Nujiang metallogenic belt is an important target region for prospecting lake-sedimentary magnesite deposits.Based on a systematic analysis of material from 62 magnesite production areas, this study investigated the metallogeny of magnesite and delineated 13 magnesite metallogenic belts.Maps were produced showing metallogenic regularities in magnesite deposits, the metallogenic system of the magnesite deposits, and the distribution of the metallogenic belts of Chinese magnesite deposits.It provides a theoretical basis for forecasting the location of potential magnesite resources in China.Finally, it explores some key scientific issues, including the formation processes of ultra magnesite ore-concentrated areas, and their sources of magnesium.展开更多
Recently, an over 100 km long MORB-type eclogite belt of Permian was discovered in the Sumdo (松多) region of the Lhasa block, Tibet. A critical question thus is: what is the tectonic setting of the eelogite belt a...Recently, an over 100 km long MORB-type eclogite belt of Permian was discovered in the Sumdo (松多) region of the Lhasa block, Tibet. A critical question thus is: what is the tectonic setting of the eelogite belt and is it related to an unrecognized suture in the region? Further investigations show that there are some mafic and ultramafic rocks spacially associated with the eclogite belt in the region. Three ultramafic massifs were recognized in the Sumdo region, and called the Luomaling (罗马岭), Gongbupala (贡布爬拉) and Qiazhasumdo (卡扎松多) massifs. All the massifs are fault-contacted with greenschist (Chasagang (岔萨岗) Formation) or muscovite-quartz schist (Mabuku (马布库) Formation), and individuals are about 100 m×50 m in size extending in EW as the regional structure. All the ultramafic rocks have been entirely serpentinized, and the Gongbupala massif has been selected for study in geochemistry. Eleven chemical analyses of the rocks from the Gongbupala massif show a narrow range in contents: SiO2 (35.97-40.63) wt.%, MgO (37.02-38.60) wt.%, TiO2 (0.01-0.08) wt.%, Al2O3 (0.80-1.64) wt.%, (Na2O+K2O) less than 0.1 wt.%, with high volatile contents (H2O+CO2) (11.24-14.91) wt.%. After recalculation without H2O+CO2, the mean values are SiO2 45.24 wt.%, MgO 43.54 wt.%, FeOT (7.45-9.97) wt.% (8.55 wt.% in average), (MgO+FeOT) 52.09 wt.%, Mg# (100×Mg/(Mg+Fe*), where Fe* represents total Fe)=89.42-90.08, (m+f)/Si ((atomicity Mg+atomicity Fe) /atomicity Si)=1.53-1.75 (1.59 in average), respectively. The mean M/F (atomicity Mg/atomicity Fe) ratio of the rocks is 9.05, which is classified as magnesium enriched-type of ultramafic rocks. The compositional features, depleted in K, Na, Ca, AI and Ti and enriched in Mg#, indicate the characteristics of peridotite originated from a depleted mantle. The rocks have low REE with ∑(1.60-2.68)×10^-6 similar to those of the primitive mantle. The chondrite-normalized REE patterns of all samples show slightly enrichment in LREE, with (Ce/Yb)N 1.03-2.46, but a little depleted in HREE. Most samples show a slight negative anomaly in Eu, a feature in REE from a relic mantle and common features in highly serpentinized ultramafic rocks in the Yarlung-Zangbo (雅鲁藏布) ophiolite and the Bangong (班公)-Nujiang (怒江) ophiolite in Tibet. The primitive mantle-normalized spiderdiagram of trace elements for Gongbupala ultramafic rocks yields uniform distributed pattern. They are relatively enriched in Rb, Ba, La, P element (LHSE) and depleted in Sm, Ti, Y, Yb element (HFSE), a feature of metasomatic mantle peridotite. The geochemical features of the rocks suggest that the protolith of Gongbupala serpentinite in Sumdo region is harzburgite, a typical depleted mantle rock, and may represent a dismembered ophiolite unit in the region.展开更多
The Ujaragssuit Nunat layered(UNL)unit in the Itsaq Gneiss Complex,west Greenland,has been consid-ered to contain one of the oldest chromitites on Earth based on~ca.4.1 Ga Hadean whole rock Pt-Os model ages and ca.3.8...The Ujaragssuit Nunat layered(UNL)unit in the Itsaq Gneiss Complex,west Greenland,has been consid-ered to contain one of the oldest chromitites on Earth based on~ca.4.1 Ga Hadean whole rock Pt-Os model ages and ca.3.81 Ga zircon U-Pb age of the surrounding orthogneiss.This study obtained zircon from the chromitite within this unit as well as granitoid sheets that intruded into the UNL unit.In-situ U-Pb-Hf-O isotope measurements were made on the zircons.Zircons from both the chromitite and the intrusive granitoids show concordant U-Pb ages of ca.2.97-2.95 Ga.In contrast,Hf and 0 isotopic anal-yses indicate that zircons in the chromitites have a different origin from those in the intrusive granitoids.Zircons from granitoids yielded Th/U ratios higher than 0.2,initial Hf isotope ratios of 0.2805-0.2807(i.e,initial:Hf value of-11 to-5),andδ^(18)O values of mostly 6.0‰-7.0‰,which are typical for felsic igneous rocks in Archean continental crust.The least altered zircons from a chromitite exhibited initial Hf isotope ratios of 0.28078-0.28084(i.e.,initial:Hf value of-1.1 to-0.4),close the chondritic value at ca.3.0 Ga and the depleted mantle at ca.3.2 Ga.These zircons also haveδ^(18)O values of 4.2‰6.1‰which correspond to typical mantle values.The other chromitite zircons yielded Th/U ratios lower than 0.1,and Hf and 0 isotopic compositions ranging between the least altered zircons and the intrusive granitoid zir-cons.These results indicate that the zircons in the chromitites crystallized before or during the 2.97-2.95 Ga granitoid intrusion and most of the zircons were altered by subsequent metasomatism.Furthermore,the present results suggest that zircons in the chromitites originally had depleted Hf iso-topic compositions at ca.3.2-3.0 Ga.This can be explained by two different models of the evolution of the UNL unit.One is that if the UNL unit was formed at>3.81 Ga as previously thought,with the zircons in the chromitites subsequently being precipitated by ca.3.2-2.95 Ga during metamorphism or metaso-matism.The other model is that the UNL unit itself was actually formed at ca.3.2-3.0 Ga,with zircon in the chromitite representing the crystallisation age of the unit,which was then tectonically incorporated into the ca.3.81 Ga orthogneiss prior to the 2.97-2.95 Ga granitoid intrusion event.In either case,our zircon analyses reveal significant evolutionary history prior to depleted mantle Hf model ages of 3.2-2.95 Ga.Revision of the geotectonic evolution of the UNL unit and the Itsaq Gneiss Complex is therefore required.展开更多
The hydrocarbons and other organic compounds generated through abiogenic or inorganic processes are closely related to two science subjects, i.e., energy resources and life's origin and evolution. "The earth's prim...The hydrocarbons and other organic compounds generated through abiogenic or inorganic processes are closely related to two science subjects, i.e., energy resources and life's origin and evolution. "The earth's primordial abiogenic hydrocarbon theory" and "the serpentinization of abiogenic hydrocarbon theory" are the two mainstream theories in the field of related studies. Ser- pentinizafion generally occurs in slow expanding mid-ocean ridges and continental ophiolites tectonic environment, etc. The abiogenic hydrocarbons and other organic compounds formed through the serpentinization of ultramafic rocks provide energy and raw materials to support chemosynthetic microbial communities, which probably was the most important hydration reac- tion for the origin and early evolution of life. The superposition of biological and abiological processes creates big challenge to the identification of the abiogenic organic materials in serpentinite-hosted ecosystem. Whether abiotic (inorganic) process can form oil and gas resource is a difficult question that has been explored continuously by scientific community for more than a century but has not yet been solved. However, some important progress has been made. The prospecting practice of abiogenic hydrocarbons in commercial gases from the Songliao Basin, China, provides an important example for exploring abiogenic natural gas resources.展开更多
The serpentinite blocks of Indikolapelessa, located along an identified litho-tectonic boundary between the Highland Complex (HC) and the Vijayan Complex (VC) of Sri Lanka, have undergone extensive lateralization ...The serpentinite blocks of Indikolapelessa, located along an identified litho-tectonic boundary between the Highland Complex (HC) and the Vijayan Complex (VC) of Sri Lanka, have undergone extensive lateralization with metal enrichment. Characteristic serpentinite vegetation with some endemic species was recognized in the soils and supergene deposits develop on serpentinite lithology. This type of geological and ecological relationship forms vegetation covers on serpentinite lithologies which are sharply demarcated from the surrounding metamorphic terrains. The aforesaid "geo-ecological phenomenon" can be used as a tool for geo-vegetation mapping in ultramafic terrains to trace the geological boundaries in landscapes where rock outcrops are virtually absent. We success- fully applied the concept of geo-vegetation mapping in order to demarcate the boundary of underlain serpentinite rocks from surrounding non-serpentinite metamorphic rocks (e.g. granitic gneiss). The hypothesis was supported by the geochemical variations of soils/supergene deposits found at serpen- tinite and non-serpentinite sites, especially immobile elements and some trace elements. Based on whole rock chemistry and soil chemical data obtained, we suggest that the Indikolapelessa serpentinite outcrop, together with the other four serpentinite outcrops, is more likely to represent the Mg-rich mantle fragments at the time of overthrusting of the two crustal blocks of HC and VC during the Pan- African event.展开更多
基金The authors thank and appreciate Qiu-li Li and Ke-jun Hou for their help in guiding the dating work.This study was supported by National Science Foundation of China(41425010,41430212)China Geological Survey Project(DD20190057)+1 种基金National Key Research and Development Project of China(2016YFC0600304)Basic scientific research fund in Institute of Geology,CAGS(J1901-1,J1901-10).
文摘A suite of ultramafic and mafic rocks developed in the Chigu Tso area,eastern Tethyan Himalaya.Baddeleyite and zircon U-Pb ages acquired by SIMS and LA-ICP-MS from olivine pyroxenite rocks in the Chigu Tso area are 138.9±3.0 Ma and 139.0±1.9 Ma,respectively.These two Early Cretaceous ages are similar with the ages of the more abundant mafic rocks in the eastern Tethyan Himalaya,indicating that this suite of ultramafic and mafic rocks in the Chigu Tso area should be included in the outcrop area of the Comei Large Igneous Province(LIP).These ultramafic rocks provide significant evidence that the involvement of mantle plume/hot spot activities in the formation of the Comei LIP.Baddeleyite U-Pb dating by SIMS is one reliable and convenient method to constrain the formation time of ultramafic rocks.The dating results of baddeleyite and zircon from the olivine pyroxenite samples in this paper are consistent with each other within analytical uncertainties,suggesting that baddeleyite and zircon were both formed during the same magmatic process.The consistency of baddeleyite U-Pb ages in the Chigu Tso area with zircon U-Pb ages for a large number of Early Cretaceous mafic rocks in the eastern Tethyan Himalaya further support that zircon grains from such mafic rocks yielding Early Cretaceous ages are also magmatic in origin.
基金This research was supported by National Natural Science Foundation of China (Project 4870117).
文摘Ultramafic rocks of Tibet and Xinjiang are the products of partial melting of the upper mantle. The evolution of their mineral composition is marked by two parallel evolutionary series: one is the progressive increase of the 100 Mg/(Mg+Fe^(2+) ratio of silicate minerals in order of lherzolite→harzburgite→dunite, i.e. the increase in magnesium; the other is the increase of the 100 Cr/(Cr+Al) ratio of accessory chrome spinel in the same order, i. e. the increase in Chromium. The above-mentioned evolutionary trends are contrary to that of magmatic differentiation. The evolution of fabrics of ultramafic rocks is characterized by progressive variation in order of protogranular texture→melted residual texture, symplectic texture and clastophyritic texture→equigranular mosaic texture and tabular mosaic texture. Experiments of partial melting of lherzolite have convincingly shown that the evolution of Alpine ultramafic rocks resulted from the partial melting of pyrolite. Various subtypes of them represent different degrees of partial melting. The vertical zoning marked by more basic rocks in the upper part and more acid rocks in the lower actually belongs to the fusion zoning of pyrolite.
文摘Evidence for a mantle and/or basaltic component in KT boundary distal ejecta is apparently inconsistent with ejection from Chicxulub Crater since it is located on;5km thick continental crust(De Paolo et al.,1983;Montanari et al.,1983;Hildebrand and Boynton,1988,1990).Evidence for mafic/ultramafic target rocks was reinforced by discovery of chromites,some with shock planar deformation features(PDF),in impact layer samples from sites in southern Colorado and eastern Wyoming(Bohor et al.,1990).However,until now it was unclear whether the chromites originated with an impactor or with terrestrial target rocks.To this end,high-precision 54Cr/52Cr isotope ratios were measured on KT boundary chromites along with known terrestrial chromites.We find a terrestrial 54Cr/52Cr ratio in KT boundary chromites from impact layer samples collected at the above sites over the last several years(Fig.1).Ejected terrestrial chromites suggest the impact sampled terrestrial mafic and/or ultramafic target rocks not known to exist in the Chicxulub target area.
文摘The Kabr El-Bonaya mafic–ultramafic intrusion is exposed along the southeastern border of the Sinai Peninsula and the northernmost segment of the Arabian-Nubian Shield(ANS).It occurs as an elliptical intrusive body that is located along the major NE–SW trending fracture zones that prevail in the Kid metamorphic complex.The ultramafic rocks in the complex comprise ultramafic cumulates of peridotites(dunite,harzburgite and wehrlite)and pyroxenite.These rocks are generally unmetamorphosed and have intrusive contacts with the country rock.Mineral chemistry and whole-rock chemical compositions of these ultramafic rocks are mostly consistent with those of residual mantle peridotites from refractory suprasubduction tectonic settings.Based on the variations of the major elements,the studied ultramafic rocks are consistent with those of a supra-subduction zone mantle,as it seems to have melted at 1–2 GPa and 1300–1450℃.Linear variations of Al2O3,Ca O,V and Ni with Mg O,coupled with incompatible and rare-earth-element depletion and mineral compositions,suggest prior events of partial melting in both wehrlites and harzburgites.The LREE enrichment in the harzburgite,as well as the development of Cr-rich spinel,is consistent with a history of melt–peridotite interaction.The calculated(Sm/Yb)N variations for the studied peridotites indicate a general increase in the addition of fluids with an increasing degree of melting from the wehrlite(~13–15 wt%of fluid)in the source,after initial spinel peridotite melting to the harzburgite(~20–25 wt%of fluid)in the same source,which is contrary to normal abyssal peridotites.The estimated equilibration temperature ranges from 1214 to 1321℃for the studied wehrlites and from 1297 to 1374℃for harzburgites.The Mg-rich nature of the analysed olivines from the studied ultramafic rocks(Fo=81.41 to 91.77)reflect their primary composition and are similar to olivines in Alaskan-type ultramafic rocks.The Fo content of the analyzed olivines decrease slightly from the dunite to the harzburgite to the wehrlite and to pyroxenite,reflecting a fractional crystallization trend.The high Cr#and very low TiO_(2)contents(0.03–0.12 wt%)of the Cr-spinels from the studied peridotites are mostly consistent with modern highly refractory fore-arc peridotites,indicating that these peridotites developed in a supra-subduction zone environment.
文摘In its cationic,trivalent form,Chromium(Cr)it is a micronutrient,and exhibits low environmental mobility.In hexavalent form,however,it is a human carcinogen and also highly mobile.Climate is a key environmental factor controlling weathering rates and stability of primary and secondary Cr-bearing minerals.Knowledge of Cr oxidation state and mineral residence is therefore essential to estimating the risk posed by Cr in serpentinites,chromite mine wastes,and soils developed on these parent materials.X-ray absorption spectroscopy(XAS)is currently the best available technique for determination of the relative abundance of Cr(III)and Cr(VI)in situ(that is,without digestion of solid phases).A brief review of relevant XAS studies of is presented below,focusing on studies in tropical climates1,as they will be most relevant to eastern Cuba’s extensively serpentinized ophiolite belt.Cr(III)-bearing spinels are usually the dominant and most refractory Cr host in ultramafic rocks.Previous XAS studies2 indicate that in tropical climates,Cr-spinels weather rapidly to form Cr(III)-bearing secondary Fe(III)(hydr)oxides(goethite,hematite).Manganese(Mn)is also enriched in ultramafic rocks2;as Mn(IV),it can also co-precipitate with Fe(III)(hydr)oxides,or form its own secondary(hydr)oxides.A previous study found up to 20%Cr(VI)in in a tropical,serpentine soil that contained substantial Mn,and a strong correlation between the*amounts of Cr(VI)and Mn(IV)in the soil profile2.Theresults of several XAS studies suggest that a close association of Mn(IV)and Cr(III)in secondary Fe(hydr)oxides is necessary for oxidation of Cr(III)to Cr(VI)via electron transfer reactions with Mn(IV);however,additional XAS studies have shown that organic matter3and Cr-bearing aluminosilicates4 may also be important sources of Cr(III)to the environment under specific conditions.The stability and fate of Cr has not been studied in detail for these two host phase types,to the best of our knowledge.Access to XAS facilities to perform Cr geochemical experiments is limited and will only become more so in the future.We are working to develop and apply(micro)Raman spectroscopy to evaluate Cr oxidation state and mineral residence(in crystalline and amorphous materials).In addition to standard Raman scattering,we are employing resonance Raman(785 nm laser)to enhance signal from Cr(VI)-bearing phases and laser-stimulated photoluminescence to identify Cr(III)associated with Al-rich alteration products
文摘Most chrysotile deposits occur in ultramafic rocks of the ophiolite suite. The chrysotile deposits dis-cussed in the present paper were formed through metasomatism and infilling-crystallization in a continentalserpentinization environment after plate convergence, where ultramafic rocks were replaced byhydrothermal solutions consisting mainly of deep-circulating heated water derived from atmospheric precip-itation. The critical state for the formation of asbestos in ultramafic rock bodies might be reached bysuperposition of multiple stages of serpentinization. Favourable fracture systems and relatively stable geo-logical environment are important conditions for forming chrysotile deposits. Three subtypes of chrysotiledeposits could be formed in different tectonic settings and under different minerogenic geochemical condi-tions.
文摘The high-MgO ultramafic volcanic rocks in the NW Ad Dhala province are classified as meimechite according to the IUGS classification scheme.This province represents the southeastern outcrops of the Yemen Volcanic Group(YVG),which constitutes part of the AfroArabian continental large igneous province(LIP) and located within the boundary of the Afar mantle plume.In this study,we present the chemical compositions of olivine and Cr-spinel in meimechite rocks from Bagah Village in NW Ad Dhala province,aiming to characterize the genesis and partial melting conditions and to estimate the crystallization temperatures of these high-MgO rocks.Olivine crystals are characterized by high forsterite,ranges from Mg-rich core(up to Fo_(89.69)) to relatively Fe-rich rim(down to Fo_(78.57)),high CaO,MgO and MnO whereas Cr-spinel crystals have high TiO_(2) and Cr# values ranging from 0.49 to 0.63 which indicate that they are crystallized from primary magma and are typical of volcanic olivine and Crspinel that formed in intraplate tectonic setting.Olivine and Cr-spinel compositional data and primary melt composition(MgO ~ 23 wt.%) are compatible with the derivation of studied meimechite rocks from peridotite mantle source by small degrees of partial melting under conditions of high temperature and pressure at great depths,mostly within the garnet stability field.Also,these data provide a compelling indicator for the important role of upwelling Afar mantle plume in the genesis of these high-MgO ultramafic volcanic rocks.Finally,based on the different olivine-liquid equilibrium methods and Al-in-olivine thermometer approach the estimated crystallization temperature ranges from 1450 to 1490℃,and mantle potential temperature(Tp) ranges from 1617 to 1677℃,at high pressure(3-4.8 GPa).These high temperatures substantiate the existence of the Afar thermal mantle plume and its important role in the genesis of the studied meimechite rocks.
基金funding from VILLUM FONDEN Grant VKR18978 to Kristoffer SzilasChina Scholarship Council(No.202006170037)to Lingyu Zhang.
文摘The Neoarchean StorøSupracrustal Belt in SW Greenland comprises a sequence of mature quartzite,metapelite,amphibolite,and ultramafic rocks that underwent amphibolite facies metamorphism during the amalgamation of the Mesoarchean Akia Terrane and the Eoarchean Færingehavn Terrane.In this belt,tourmaline is found in a transition zone between ultramafic and metapelitic rocks,but also occurs as orbicules within the ultramafic rocks.These tourmaline orbicules hosted by ultramafic rocks are reported for the first time in the North Atlantic craton,thus indicating a unique formation mechanism.We conducted a comprehensive examination of the petrology,whole-rock and mineral chemistry,and oxygen isotope compositions from borehole samples in the StorøSupracrustal Belt,to elucidate the metasomatic events associated with the formation of the orbicular tourmalines.The Storøultramafic rocks have high MgO,Cr,and Ni contents,with low abundances of REE and HFSE,and preserve a typical cumulate texture.These features are similar to those of ultramafic cumulates found in other Archean supracrustal belts,suggesting a cumulate origin for the Storøultramafic rocks.Furthermore,the morphology and composition of the tourmaline orbicules within these cumulates indicate that they originated from melts with high boron and high water concentrations that infiltrated the ultramafic rocks.The main factor influencing the morphology of the tourmaline orbicules is the silicification of the ultramafic rocks,driven by their lower chemical potential of SiO_(2)compared to the surrounding rocks.This silicification process,in combination with compositional variations of cumulates during fractional crystallization,has contributed to the geochemical diversity observed in Archean ultramafic rocks.Thus,it is crucial to understand the effects of such selective metasomatism on Archean ultramafic rocks,as this will facilitate the extraction of original information preserved in the early rock record.
基金supported by the China Geological Survey Program (Grant No.1212010633903, 1212011220369)the National Natural Science Foundation of China (Grant No.41372092)the Chinese National Non-profit Institute Research Grant of CAGS-IMR (K1303)
文摘China has abundant reserves of magnesite, making it the world’s leading source of this strategic mineral.Sparry magnesite is the main type of magnesite deposit, and is easy to exploit.It occurs mainly as the sedimentary-metamorphic type.Production is centred on eastern Liaoning Province, where a world-class large to super large magnesite ore processing and production facility has been developed.Hydrothermal metasomatic deposits, associated with ultramafic complexes and eluvial deposits produced by weathering, are two other important types found in China.The Western section of the Bangonghu-Nujiang metallogenic belt is an important target region for prospecting lake-sedimentary magnesite deposits.Based on a systematic analysis of material from 62 magnesite production areas, this study investigated the metallogeny of magnesite and delineated 13 magnesite metallogenic belts.Maps were produced showing metallogenic regularities in magnesite deposits, the metallogenic system of the magnesite deposits, and the distribution of the metallogenic belts of Chinese magnesite deposits.It provides a theoretical basis for forecasting the location of potential magnesite resources in China.Finally, it explores some key scientific issues, including the formation processes of ultra magnesite ore-concentrated areas, and their sources of magnesium.
基金supported by China Geological Survey (Nos. 1212010610107 and 1212010610105)the Institute of Geology, Chinese Academy of Geological Sciences (No. J0701)
文摘Recently, an over 100 km long MORB-type eclogite belt of Permian was discovered in the Sumdo (松多) region of the Lhasa block, Tibet. A critical question thus is: what is the tectonic setting of the eelogite belt and is it related to an unrecognized suture in the region? Further investigations show that there are some mafic and ultramafic rocks spacially associated with the eclogite belt in the region. Three ultramafic massifs were recognized in the Sumdo region, and called the Luomaling (罗马岭), Gongbupala (贡布爬拉) and Qiazhasumdo (卡扎松多) massifs. All the massifs are fault-contacted with greenschist (Chasagang (岔萨岗) Formation) or muscovite-quartz schist (Mabuku (马布库) Formation), and individuals are about 100 m×50 m in size extending in EW as the regional structure. All the ultramafic rocks have been entirely serpentinized, and the Gongbupala massif has been selected for study in geochemistry. Eleven chemical analyses of the rocks from the Gongbupala massif show a narrow range in contents: SiO2 (35.97-40.63) wt.%, MgO (37.02-38.60) wt.%, TiO2 (0.01-0.08) wt.%, Al2O3 (0.80-1.64) wt.%, (Na2O+K2O) less than 0.1 wt.%, with high volatile contents (H2O+CO2) (11.24-14.91) wt.%. After recalculation without H2O+CO2, the mean values are SiO2 45.24 wt.%, MgO 43.54 wt.%, FeOT (7.45-9.97) wt.% (8.55 wt.% in average), (MgO+FeOT) 52.09 wt.%, Mg# (100×Mg/(Mg+Fe*), where Fe* represents total Fe)=89.42-90.08, (m+f)/Si ((atomicity Mg+atomicity Fe) /atomicity Si)=1.53-1.75 (1.59 in average), respectively. The mean M/F (atomicity Mg/atomicity Fe) ratio of the rocks is 9.05, which is classified as magnesium enriched-type of ultramafic rocks. The compositional features, depleted in K, Na, Ca, AI and Ti and enriched in Mg#, indicate the characteristics of peridotite originated from a depleted mantle. The rocks have low REE with ∑(1.60-2.68)×10^-6 similar to those of the primitive mantle. The chondrite-normalized REE patterns of all samples show slightly enrichment in LREE, with (Ce/Yb)N 1.03-2.46, but a little depleted in HREE. Most samples show a slight negative anomaly in Eu, a feature in REE from a relic mantle and common features in highly serpentinized ultramafic rocks in the Yarlung-Zangbo (雅鲁藏布) ophiolite and the Bangong (班公)-Nujiang (怒江) ophiolite in Tibet. The primitive mantle-normalized spiderdiagram of trace elements for Gongbupala ultramafic rocks yields uniform distributed pattern. They are relatively enriched in Rb, Ba, La, P element (LHSE) and depleted in Sm, Ti, Y, Yb element (HFSE), a feature of metasomatic mantle peridotite. The geochemical features of the rocks suggest that the protolith of Gongbupala serpentinite in Sumdo region is harzburgite, a typical depleted mantle rock, and may represent a dismembered ophiolite unit in the region.
基金supported by JSPS KAKENHI Grant Numbers 16H05741,19KK0092Kana-zawa SAKIGAKE 2018 to T.M.,and 20 K14571 to H.S..K.S.thanks the Carlsberg Foundation for support via grant CF18-0090.
文摘The Ujaragssuit Nunat layered(UNL)unit in the Itsaq Gneiss Complex,west Greenland,has been consid-ered to contain one of the oldest chromitites on Earth based on~ca.4.1 Ga Hadean whole rock Pt-Os model ages and ca.3.81 Ga zircon U-Pb age of the surrounding orthogneiss.This study obtained zircon from the chromitite within this unit as well as granitoid sheets that intruded into the UNL unit.In-situ U-Pb-Hf-O isotope measurements were made on the zircons.Zircons from both the chromitite and the intrusive granitoids show concordant U-Pb ages of ca.2.97-2.95 Ga.In contrast,Hf and 0 isotopic anal-yses indicate that zircons in the chromitites have a different origin from those in the intrusive granitoids.Zircons from granitoids yielded Th/U ratios higher than 0.2,initial Hf isotope ratios of 0.2805-0.2807(i.e,initial:Hf value of-11 to-5),andδ^(18)O values of mostly 6.0‰-7.0‰,which are typical for felsic igneous rocks in Archean continental crust.The least altered zircons from a chromitite exhibited initial Hf isotope ratios of 0.28078-0.28084(i.e.,initial:Hf value of-1.1 to-0.4),close the chondritic value at ca.3.0 Ga and the depleted mantle at ca.3.2 Ga.These zircons also haveδ^(18)O values of 4.2‰6.1‰which correspond to typical mantle values.The other chromitite zircons yielded Th/U ratios lower than 0.1,and Hf and 0 isotopic compositions ranging between the least altered zircons and the intrusive granitoid zir-cons.These results indicate that the zircons in the chromitites crystallized before or during the 2.97-2.95 Ga granitoid intrusion and most of the zircons were altered by subsequent metasomatism.Furthermore,the present results suggest that zircons in the chromitites originally had depleted Hf iso-topic compositions at ca.3.2-3.0 Ga.This can be explained by two different models of the evolution of the UNL unit.One is that if the UNL unit was formed at>3.81 Ga as previously thought,with the zircons in the chromitites subsequently being precipitated by ca.3.2-2.95 Ga during metamorphism or metaso-matism.The other model is that the UNL unit itself was actually formed at ca.3.2-3.0 Ga,with zircon in the chromitite representing the crystallisation age of the unit,which was then tectonically incorporated into the ca.3.81 Ga orthogneiss prior to the 2.97-2.95 Ga granitoid intrusion event.In either case,our zircon analyses reveal significant evolutionary history prior to depleted mantle Hf model ages of 3.2-2.95 Ga.Revision of the geotectonic evolution of the UNL unit and the Itsaq Gneiss Complex is therefore required.
基金supported by National Natural Science Foundation of China (Grant Nos. 41172133, 41272146, 41103022)
文摘The hydrocarbons and other organic compounds generated through abiogenic or inorganic processes are closely related to two science subjects, i.e., energy resources and life's origin and evolution. "The earth's primordial abiogenic hydrocarbon theory" and "the serpentinization of abiogenic hydrocarbon theory" are the two mainstream theories in the field of related studies. Ser- pentinizafion generally occurs in slow expanding mid-ocean ridges and continental ophiolites tectonic environment, etc. The abiogenic hydrocarbons and other organic compounds formed through the serpentinization of ultramafic rocks provide energy and raw materials to support chemosynthetic microbial communities, which probably was the most important hydration reac- tion for the origin and early evolution of life. The superposition of biological and abiological processes creates big challenge to the identification of the abiogenic organic materials in serpentinite-hosted ecosystem. Whether abiotic (inorganic) process can form oil and gas resource is a difficult question that has been explored continuously by scientific community for more than a century but has not yet been solved. However, some important progress has been made. The prospecting practice of abiogenic hydrocarbons in commercial gases from the Songliao Basin, China, provides an important example for exploring abiogenic natural gas resources.
基金by the Sabaragamuwa University of Sri Lanka(No.SUSL/RG/2006/05)is acknowledged for financial support
文摘The serpentinite blocks of Indikolapelessa, located along an identified litho-tectonic boundary between the Highland Complex (HC) and the Vijayan Complex (VC) of Sri Lanka, have undergone extensive lateralization with metal enrichment. Characteristic serpentinite vegetation with some endemic species was recognized in the soils and supergene deposits develop on serpentinite lithology. This type of geological and ecological relationship forms vegetation covers on serpentinite lithologies which are sharply demarcated from the surrounding metamorphic terrains. The aforesaid "geo-ecological phenomenon" can be used as a tool for geo-vegetation mapping in ultramafic terrains to trace the geological boundaries in landscapes where rock outcrops are virtually absent. We success- fully applied the concept of geo-vegetation mapping in order to demarcate the boundary of underlain serpentinite rocks from surrounding non-serpentinite metamorphic rocks (e.g. granitic gneiss). The hypothesis was supported by the geochemical variations of soils/supergene deposits found at serpen- tinite and non-serpentinite sites, especially immobile elements and some trace elements. Based on whole rock chemistry and soil chemical data obtained, we suggest that the Indikolapelessa serpentinite outcrop, together with the other four serpentinite outcrops, is more likely to represent the Mg-rich mantle fragments at the time of overthrusting of the two crustal blocks of HC and VC during the Pan- African event.