期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Water content of the Xiaogulihe ultrapotassic volcanic rocks, NE China: implications for the source of the potassium-rich component
1
作者 Huan Chen Qun-ke Xia Jannick Ingrin 《Science Bulletin》 SCIE EI CAS CSCD 2015年第16期1468-1470,共3页
Water has become an effective means to trace the mantle source of basaltic magmas recently. To investigate the source of the potassium-rich component in the Xiaogulihe ultrapotassic volcanic rocks of NE China, we meas... Water has become an effective means to trace the mantle source of basaltic magmas recently. To investigate the source of the potassium-rich component in the Xiaogulihe ultrapotassic volcanic rocks of NE China, we measured the water content of clinopyroxene (cpx) phenocrysts by Fourier transform infrared spectrometry and calculated the H2O content of the equilibrated melts according to the partition coefficients of H2O between cpx phenocrysts and basaltic melts. The estimated H2O content of the "primary" magmas is low (0.36 wt%-0.50 wt%), within the range of mid-ocean ridge basalts and ocean island basalts, while it is obviously lower than that of backarc basin basalts and island arc basalts. The calculated H20/Ce ratio of the "primary" magmas is about 15, which might be similar to that of the dehydrated sediments (〈100), but observably lower than that of the normal depleted mantle (DMM, H2O/Ce = 150-210). The low water content and especially low H2O/Ce ratio of the "primary" magmas demonstrate that the K-rich component of these ultrapotassic volcanic rocks seems unlikely tooriginate from K-bearing hydrous minerals (such as phlogopite) in metasomatic subcontinental lithospheric mantle. Combined with the low 206pb/204pb ratios, moderately high 87Sr/86Sr ratios of the bulk rocks and the high δ18O values of olivine phenocrysts, we suggest that the K-rich component in the mantle source of the Xiaogulihe ultrapotassic volcanic rocks may come from ancient continental-derived sediments which dehydrated significantly during subduction (e.g., dry K-hollandite). 展开更多
关键词 ultrapotassic volcanic rocks NE China.Water content Dehydrated sediments
原文传递
Geochronology,petrology,and geochemistry of the Yaojiazhuang ultramafic-syenitic complex from the North China Craton 被引量:14
2
作者 CHEN Bin NIU XiaoLu +2 位作者 WANG ZhiQiang GAO Lin WANG Chao 《Science China Earth Sciences》 SCIE EI CAS 2013年第8期1294-1307,共14页
The Yaojiazhuang ultramafic-syenitic complex is one of the representative Triassic alkaline plutons on the northern margin of the North China Craton (NCC). Based on detailed study of the zircon U-Pb age, petrologica... The Yaojiazhuang ultramafic-syenitic complex is one of the representative Triassic alkaline plutons on the northern margin of the North China Craton (NCC). Based on detailed study of the zircon U-Pb age, petrological, mineralogical, and geochemical data of the complex, the characteristics of the magmas system, the petrogenesis of different rock types, and the nature of the mantle source were discussed to provide new constraints on the origin and tectonic setting of the Triassic alkaline belt. Cumu- lus ultramafic rocks, clinopyroxene-syenites and syenites are the main rock types of the complex. The zircons from the sye- nites yielded a U-Pb age of 209 Ma. Diopside-augite, biotite, and sanidine-orthoclase are the major minerals, with subordinate apatite and magnetite. Rocks from the complex are enriched in large ion lithophile elements (LILE) and light rare earth ele- ments (LREE), depleted in high field strength elements (HFSE) and heavy rare earth elements (HREE), and the initial 878r]86Sr ranges from 0.7057 to 0.7061 and eNd(t) from -9.4 to -11.4. Mineralogy and geochemical data demonstrate that the parent magma of the complex is SiO2-undersaturated ultrapotassic alkaline-peralkaline, and is characterized by high CaO content and fluid compositions (P205, CO2, H20), and by high oxygen fugacity and high temperature. The complex was originated from a phlogopite-clinopyroxenite-rich lithospheric mantle source in the garnet-stable area (〉 80 km) that had previously been meta- somatized by melts/fluids from altered oceanic crust. The parent magma has been contaminated by little ancient TTG gneisses during magma emplacement. The development of the Yaojiazhuang complex indicates that the northern margin of the NCC has entered into an extensively extensional regime in the Late Triassic. 展开更多
关键词 zircon U-Pb age GEOCHEMISTRY PETROLOGY ultrapotassic alkaline rocks North China Craton
原文传递
Origin of Baotoudong syenites in North China Craton:Petrological, mineralogical and geochemical evidence 被引量:11
3
作者 NIU Xiao Lu YANG Jing Sui +2 位作者 LIU Fei ZHANG Hong Yu YANG Ming Chun 《Science China Earth Sciences》 SCIE EI CAS CSCD 2016年第1期95-110,共16页
Baotoudong syenite pluton is located to the east of Baotou City, Inner Mongolia, the westernmost part of the Trias- sic alkaline magmatic belt along the northern margin of the North China Craton (NCC). Zircon U-Pb a... Baotoudong syenite pluton is located to the east of Baotou City, Inner Mongolia, the westernmost part of the Trias- sic alkaline magmatic belt along the northern margin of the North China Craton (NCC). Zircon U-Pb age, petrological, miner- alogical and geochemical data of the pluton were obtained in this paper, to constrain its origin and mantle source characteris- tics. The pluton is composed of nepheline-clinopyroxene syenite and alkali-feldspar syenite, with zircon U-Pb age of 214.7±1.1 Ma. Diopside (cores)-aegirine-augite (rims), biotite, orthoclase and nepheline are the major minerals. The Bao- toudong syenites have high contents of rare earth elements (REE), and are characterized by enrichment in light rare earth ele- ments (LREE) and large ion lithophile elements (LILE; e.g., Rb, Ba, Sr), depletion in heavy rare earth elements (HREE) and high field strength elements (HFSE). They show enriched Sr-Nd isotopic compositions with initial 87Sr/86Sr ranging from 0.7061 to 0.7067 and eNd(t) values from -9.0 to -11.2. Mineralogy, petrology and geochemical studies show that the parental magma of the syenites is SiO2-undersaturated potassic-ultrapotassic, and is characterized by high contents of CaO, Fe2O3, K2O, Na2O and fluid compositions (H2O), and by high temperature and high oxygen fugacity. The syenites were originated from a phlogopite-rich, enriched lithospheric mantle source in garnet-stable area (〉80 km). The occurrence of the Baotoudong sye- nites, together with many other ultrapotassic, alkaline complexes of similar ages on the northern margin of the NCC in Late Triassic implies that the lithospheric mantle beneath the northern margin of the NCC was previously metasomatized by melts/fluids from the subducted, altered paleo-Mongolian oceanic crust, and the northern margin of the craton has entered into an extensively extensional regime as a destructive continental margin in Late Triassic. 展开更多
关键词 Zircon U-Pb age MINERALOGY Geochemistry Baotoudong syenites ultrapotassic alkaline rocks TRIASSIC Mantlemetasomatism North China Craton
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部