A focused ultrasonic transducer is used for precise, step-by-step, surface ultrasonic svanuing iusgection of spot welds. Two methods for generating characteristic data matrices of ultrasonic echo signals of the spot w...A focused ultrasonic transducer is used for precise, step-by-step, surface ultrasonic svanuing iusgection of spot welds. Two methods for generating characteristic data matrices of ultrasonic echo signals of the spot welds are established. One is based on the ultrasonic echo amplitude and the other is based on frequency spectrum. Both methods generate scamping inspection data arrays and provide clear C-scan images. Based on C-scan noise reduction, the Krisch edge detection operator for edge detection-a gray window transform-reflects the shapes of the spot welds and allows quantitative determination of their size. The method based on the ultrasonic echo amplitude provides a greater quantitative detection accuracy.展开更多
In this paper, ultrasonic C-scan test of spot welds for stainless steel has been studied. It is concluded that large scanning step length contributes to high testing efficiency, however, the low-resolution C-scan imag...In this paper, ultrasonic C-scan test of spot welds for stainless steel has been studied. It is concluded that large scanning step length contributes to high testing efficiency, however, the low-resolution C-scan image generated cannot be used to assess spot welding quality reliably. Based on bicubic image interpolation, the C-scan image in low resolution with the large step length 1 000 ~xm is subdivided and reconstructed. By this means, the C-scan image resolution is greatly enhanced and testing results obtained are satisfactory, realizing rapid assessment of spot welds. The results of rapid ultrasonic C-scan test fit the actual metallographic measured value well. Mean value of normal distribution of error statistics is O. 006 67, and the standard deviation is O. 087 11. Rapid ultrasonic C-scan test based on image interpolation is of high accuracy and excellent stability.展开更多
分别对1.5 mm厚的钛合金板进行胶接点焊和电阻点焊连接,获得了不同焊接电流下的胶接点焊和电阻点焊接头,从熔核的C扫描图像、接头的失效载荷和断口形貌等方面,对比分析了胶接点焊和电阻点焊的接头强度及失效样貌.结果表明,通过观察A扫...分别对1.5 mm厚的钛合金板进行胶接点焊和电阻点焊连接,获得了不同焊接电流下的胶接点焊和电阻点焊接头,从熔核的C扫描图像、接头的失效载荷和断口形貌等方面,对比分析了胶接点焊和电阻点焊的接头强度及失效样貌.结果表明,通过观察A扫描信号的变化与C扫描图像的特征,能够很好的划分接头的热影响区、熔合区、熔核区以及检测出接头的熔核直径和焊接缺陷.随着焊接电流(7.0~10.0 k A)的逐渐增大,接头熔核直径及失效载荷呈递增趋势;当焊接条件相同时,胶接点焊接头的熔核直径普遍大于电阻点焊接头,但接头的强度相当.当电流在7.0~8.5 k A时,接头强度不足,熔核区的断口处出现大小不等的韧窝,呈现出韧性断裂特征;当电流为10.0 k A时,接头强度较高,主要呈现出韧性断裂与准解理断裂特征.展开更多
文摘A focused ultrasonic transducer is used for precise, step-by-step, surface ultrasonic svanuing iusgection of spot welds. Two methods for generating characteristic data matrices of ultrasonic echo signals of the spot welds are established. One is based on the ultrasonic echo amplitude and the other is based on frequency spectrum. Both methods generate scamping inspection data arrays and provide clear C-scan images. Based on C-scan noise reduction, the Krisch edge detection operator for edge detection-a gray window transform-reflects the shapes of the spot welds and allows quantitative determination of their size. The method based on the ultrasonic echo amplitude provides a greater quantitative detection accuracy.
文摘In this paper, ultrasonic C-scan test of spot welds for stainless steel has been studied. It is concluded that large scanning step length contributes to high testing efficiency, however, the low-resolution C-scan image generated cannot be used to assess spot welding quality reliably. Based on bicubic image interpolation, the C-scan image in low resolution with the large step length 1 000 ~xm is subdivided and reconstructed. By this means, the C-scan image resolution is greatly enhanced and testing results obtained are satisfactory, realizing rapid assessment of spot welds. The results of rapid ultrasonic C-scan test fit the actual metallographic measured value well. Mean value of normal distribution of error statistics is O. 006 67, and the standard deviation is O. 087 11. Rapid ultrasonic C-scan test based on image interpolation is of high accuracy and excellent stability.
文摘利用超声波水浸聚焦入射法对1 mm厚的SUS304奥氏体不锈钢板点焊接头进行超声C扫描成像检测.分析了不同焊接工艺参数下的C扫描图像特征,甄别了飞溅、焊穿等典型焊接缺陷,并提取其对应的A扫描信号.基于C扫描图像对焊核直径进行了测量,并与焊核切口端面尺寸进行了比较.结果表明,基于超声波水浸聚焦入射法得到的C扫描图像,能有效观测焊核内部形貌特征.焊接电流超过8 k A,电极力小于2 700 N时,超声波C扫描图像中清晰反映出飞溅、焊穿等缺陷,其对应区域的A扫描信号与正常熔核区波形特征有明显差异;借助超声C扫描图像测得的焊核直径为4.39~5.25 mm.
文摘分别对1.5 mm厚的钛合金板进行胶接点焊和电阻点焊连接,获得了不同焊接电流下的胶接点焊和电阻点焊接头,从熔核的C扫描图像、接头的失效载荷和断口形貌等方面,对比分析了胶接点焊和电阻点焊的接头强度及失效样貌.结果表明,通过观察A扫描信号的变化与C扫描图像的特征,能够很好的划分接头的热影响区、熔合区、熔核区以及检测出接头的熔核直径和焊接缺陷.随着焊接电流(7.0~10.0 k A)的逐渐增大,接头熔核直径及失效载荷呈递增趋势;当焊接条件相同时,胶接点焊接头的熔核直径普遍大于电阻点焊接头,但接头的强度相当.当电流在7.0~8.5 k A时,接头强度不足,熔核区的断口处出现大小不等的韧窝,呈现出韧性断裂特征;当电流为10.0 k A时,接头强度较高,主要呈现出韧性断裂与准解理断裂特征.