期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Improving fatigue properties of normal direction ultrasonic vibration assisted face grinding Inconel 718 by regulating machined surface integrity
1
作者 Nianwei Xu Renke Kang +4 位作者 Bi Zhang Yuan Zhang Chenxu Wang Yan Bao Zhigang Dong 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期458-475,共18页
Fatigue properties are crucial for critical aero-engine components in extreme serviceenvironments,which are significantly affected by surface integrity(SI)indexes(especially surface topography,residual stressσ_(res),... Fatigue properties are crucial for critical aero-engine components in extreme serviceenvironments,which are significantly affected by surface integrity(SI)indexes(especially surface topography,residual stressσ_(res),and microhardness)after machining processes.Normal-direction ultrasonic vibration-assisted face grinding(ND-UVAFG)has advantages in improving the machinability of Inconel 718,but there is a competitive relationship between higher compressiveσ_(res)and higher surface roughness R_(a)in affecting fatigue strength.The lack of a quantitative relationship between multiple SI indexes and fatigue strength makes theindeterminacy of a regulatory strategy for improving fatigue properties.In this work,a model of fatigue strength(σ_f)_(sur)considering multiple SI indexes was developed.Then,high-cycle fatigue tests were carried out on Inconel 718 samples with different SI characteristics,and the influence of ND-UVAFG process parameters on SI was analyzed.Based on SI indexes data,the(σ_f)_(sur)distribution in the grinding surface layer for ND-UVAFG Inconel 718 samples was determined using the developed model,and then the fatigue crack initiation(FCI)sites were furtherpredicted.The predicted FCI sites corresponded well with the experimental results,therebyverifying this model.A strategy for improving the fatigue life was proposed in this work,which was to transfer the fatigue source from the machined surface to the bulk material by controlling the SI indexes.Finally,a critical condition of SI indexes that FCI sites appeared on the surface or in bulk material was given by fitting the predicted results.According to the critical condition,an SI field where FCI sites appeared in the bulk material could be obtained.In this field,thefatigue life of Inconel 718 samples could be improved by approximately 140%. 展开更多
关键词 surface integrity fatigue strength Inconel 718 ultrasonic assisted grinding
下载PDF
Research on Ultrasonic Vibration Grinding of the Hard and Brittle Materials 被引量:4
2
作者 YANG Xin-hong HAN Jie-cai +2 位作者 ZHANG Yu-min ZUO Hong-bo ZHANG Xue-jun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第B12期9-13,共5页
It is well known that grinding techniques are main methods to machine hard and brittle materials such as engineering ceramics. But the conventional grinding has many shortcomings such as poorer surface finish, quicker... It is well known that grinding techniques are main methods to machine hard and brittle materials such as engineering ceramics. But the conventional grinding has many shortcomings such as poorer surface finish, quicker wear and tear of grinding tools, lower efficiency and so on. Ultrasonic vibration grinding (UVG) which combines ultrasonic machining and grinding emerged as a developing and promising technique in recent years. In this paper, experimental studies on UVG were conducted on several kinds of hard and brittle material by altering processing parameters such as vibration frequency and its amplitude, diamond abrasive grit size, cutting depth, feeding speed and rotary speed of tools. The experimental results show that alteration in any of above mentioned parameters will bring effects on the processed surface finish of these materials. Of them, the diamond abrasive grit size has the greatest. Moreover, conventional grinding experiments were also carried out on these materials. By comparison, it was found that the UVG is superior to the conventional method in terms of the ground surface quality, the working efficiency and the wear rate of tools. 展开更多
关键词 ultrasonic vibration grinding (UVG) hard and brittle materials surface roughness wear extent
下载PDF
Surface Topography of Fine-grained ZrO_2 Ceramic by Two-dimensional Ultrasonic Vibration Grinding
3
作者 丁爱玲 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第6期1162-1165,共4页
The surface quality of fine-grained ZrO2 engineering ceramic were researched using 270# diamond wheel both with and without work-piece two-dimension ultrasonic vibration grinding(WTDUVG). By AFM images, the surface ... The surface quality of fine-grained ZrO2 engineering ceramic were researched using 270# diamond wheel both with and without work-piece two-dimension ultrasonic vibration grinding(WTDUVG). By AFM images, the surface topography and the micro structure of the two-dimensional ultrasonic vibration grinding ceramics were especially analyzed. The experimental results indicate that the surface roughness is related to grinding vibration mode and the material removal mechanism. Surface quality of WTDUVG is superior to that of conventional grinding, and it is easy for two-dimensional ultrasonic vibration grinding that material removal mechanism is ductile mode grinding. 展开更多
关键词 two-dimension ultrasonic vibration grinding surface topography ductile grinding
下载PDF
Separate critical condition for ultrasonic vibration assisted grinding
4
作者 张洪丽 张建华 《Journal of Shanghai University(English Edition)》 2009年第5期391-395,共5页
Separate characteristic of the tangential ultrasonic vibration assisted grinding (TUAG) machining is analyzed based on TUAG process, and a critical speed formula is given to correctly set the machining parameters to i... Separate characteristic of the tangential ultrasonic vibration assisted grinding (TUAG) machining is analyzed based on TUAG process, and a critical speed formula is given to correctly set the machining parameters to insure the separate characteristics of TUAG process. The critical speed is not only related to the ultrasonic vibration amplitude and frequency, but also to the grinding wheel velocity and the cutting point space, and the grinding force can be decreased during the TUAG process with separability. Grinding force experiments are conducted, and the experimental results are in good agreement with the theoretical results. 展开更多
关键词 tangential ultrasonic vibration assisted grinding (TUAG) critical speed separate characteristic
下载PDF
Prediction of undeformed chip thickness distribution and surface roughness in ultrasonic vibration grinding of inner hole of bearings
5
作者 Yanqin LI Daohui XIANG +2 位作者 Guofu GAO Feng JIAO Bo ZHAO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第4期311-323,共13页
Ultrasonic vibration grinding differs from traditional grinding in terms of its material removal mechanism.The randomness of grain-workpiece interaction in ultrasonic vibration grinding can produce variable chips and ... Ultrasonic vibration grinding differs from traditional grinding in terms of its material removal mechanism.The randomness of grain-workpiece interaction in ultrasonic vibration grinding can produce variable chips and impact the surface roughness of workpiece.However,previous studies used iterative method to calculate the unformed chip thickness(UCT),which has low computational efficiency.In this study,a symbolic difference method is proposed to calculate the UCT.The UCT distributions are obtained to describe the stochastic interaction characteristics of ultrasonic grinding process.Meanwhile,the UCT distribution characteristics under different machining parameters are analyzed.Then,a surface roughness prediction model is established based on the UCT distribution.Finally,the correctness of the model is verified by experiments.This study provides a quick and accurate method for predicting surface roughness in longitudinal ultrasonic vibration grinding. 展开更多
关键词 ultrasonic vibration grinding Undeformed chip thickness(UCT) Distribution characteristics Surface roughness
原文传递
Grindability Evaluation of Ultrasonic Assisted Grinding of Silicon Nitride Ceramic Using Minimum Quantity Lubrication Based SiO_(2)Nanofluid
6
作者 Yusuf Suleiman Dambatta Changhe Li +8 位作者 Mohd Sayuti Ahmed A D Sarhan Min Yang Benkai Li Anxue Chu Mingzheng Liu Yanbin Zhang Zafar Said Zongming Zhou 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS 2024年第2期115-136,共22页
Minimum quantity Lubrication(MQL)is a sustainable lubrication system that is famous in many machining systems.It involve the spray of an infinitesimal amount of mist-like lubricants during machining processes.The MQL ... Minimum quantity Lubrication(MQL)is a sustainable lubrication system that is famous in many machining systems.It involve the spray of an infinitesimal amount of mist-like lubricants during machining processes.The MQL system is affirmed to exhibit an excellent machining performance,and it is highly economical.The nanofluids are understood to exhibit excellent lubricity and heat evacuation capability,compared to pure oil-based MQL system.Studies have shown that the surface quality and amount of energy expended in the grinding operations can be reduced considerably due to the positive effect of these nanofluids.This work presents an experimental study on the tribological performance of SiO_(2)nanofluid during grinding of Si_(3)N_(4)ceramic.The effect different grinding modes and lubrication systems during the grinding operation was also analyzed.Different concentrations of the SiO_(2)nanofluid was manufactured using canola,corn and sunflower oils.The quantitative evaluation of the grinding process was done based on the amount of grinding forces,specific grinding energy,frictional coefficient,and surface integrity.It was found that the canola oil exhibits optimal lubrication performance compared to corn oil,sunflower oil,and traditional lubrication systems.Additionally,the introduction of ultrasonic vibrations with the SiO_(2)nanofluid in MQL system was found to reduce the specific grinding energy,normal grinding forces,tangential grinding forces,and surface roughness by 65%,57%,65%,and 18%respectively.Finally,regression analysis was used to obtain an optimum parameter combinations.The observations from this work will aid the smooth transition towards ecofriendly and sustainable machining of engineering ceramics. 展开更多
关键词 Minimum quantity lubrication(MQL) ultrasonic assisted grinding(UAG) Eco-friendly lubricants Nanofluid grinding Ceramic
下载PDF
Developing a novel radial ultrasonic vibration-assisted grinding device and evaluating its performance in machining PTMCs 被引量:1
7
作者 Biao ZHAO Bangfu WU +3 位作者 Yansong YUE Wenfeng DING Jiuhua XU Guoqiang GUO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第7期244-256,共13页
Particle-reinforcing titanium matrix composites(PTMCs)exhibit the sharp raising applications in modern industries owing to its extraordinary physical and mechanical properties.However,the poor grindability and unstabl... Particle-reinforcing titanium matrix composites(PTMCs)exhibit the sharp raising applications in modern industries owing to its extraordinary physical and mechanical properties.However,the poor grindability and unstable grinding processes due to the existence of TiC particles and TiB short fibres inside PTMCs,leading to the sudden grinding burn and low material removal rate.In this work,a novel radial ultrasonic vibration-assisted grinding(RUVAG)device with a special cross structure was developed to improve machining efficiency and avoid grinding burns.Meanwhile,the resonant modal and transient dynamic characteristics of radial ultrasonic vibration system were discussed.Comparative grinding performance experiments were then conducted under the conventional grinding(CG)and RUVAG using mono-layer cubic boron nitride abrasive wheels,in views of the grinding forces and force ratio,grinding temperature,and ground surface morphology.Results show that the ultrasonic vibration direction can be transformed effectively using the special cross structure of vibration converter,and better vibration homogeneity can be obtained.RUVAG has a smaller tangential grinding force by 5.0%–17.2%than that of CG,but a higher normal grinding force of 6.5%–14.9%,owing to the periodic impact of grinding wheels.In addition,RUVAG possesses a remarkable lower grinding temperature in range of 24.2%–51.8%and a higher material removal rate by 2.8 times compared with CG,resulting from the intermittent cutting behavior between the grinding wheel and workpiece.In this case,the sudden burn can be avoided during high-speed grinding processes.Moreover,the proportion of micro-fracture defects on machined surface is slightly increased once the ultrasonic vibration mode is employed because of the periodic impact on reinforced particles,whereas the pull-out defects of reinforced particles are reduced significantly. 展开更多
关键词 grinding force grinding temperature Ground surface morphology Particle-reinforcing titanium matrix composites Radial ultrasonic vibrationassisted grinding
原文传递
Vibration characteristics and machining performance of a novel perforated ultrasonic vibration platform in the grinding of particulate-reinforced titanium matrix composites
8
作者 Yang CAO Biao ZHAO +1 位作者 Wenfeng DING Qiang HUANG 《Frontiers of Mechanical Engineering》 SCIE CSCD 2023年第1期179-195,共17页
Ultrasonic vibration-assisted grinding(UVAG)is an advanced hybrid process for the precision machining of difficult-to-cut materials.The resonator is a critical part of the UVAG system.Its performance considerably infl... Ultrasonic vibration-assisted grinding(UVAG)is an advanced hybrid process for the precision machining of difficult-to-cut materials.The resonator is a critical part of the UVAG system.Its performance considerably influences the vibration amplitude and resonant frequency.In this work,a novel perforated ultrasonic vibration platform resonator was developed for UVAG.The holes were evenly arranged at the top and side surfaces of the vibration platform to improve the vibration characteristics.A modified apparent elasticity method(AEM)was proposed to reveal the influence of holes on the vibration mode.The performance of the vibration platform was evaluated by the vibration tests and UVAG experiments of particulate-reinforced titanium matrix composites.Results indicate that the reasonable distribution of holes helps improve the resonant frequency and vibration mode.The modified AEM,the finite element method,and the vibration tests show a high degree of consistency for developing the perforated ultrasonic vibration platform with a maximum frequency error of 3%.The employment of ultrasonic vibration reduces the grinding force by 36%at most,thereby decreasing the machined surface defects,such as voids,cracks,and burnout. 展开更多
关键词 ultrasonic vibration-assisted grinding perforated ultrasonic vibration platform vibration characteristics apparent elasticity method grinding force surface integrity
原文传递
Al_2O_3陶瓷蠕动进给超声磨削加工表面质量的试验研究(英文) 被引量:5
9
作者 郑建新 徐家文 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2006年第4期359-365,共7页
In order to grind the ceramic blade surface with the Numerical Control contour evolution ultrasonic grinding method using the simple shape grinding wheel, primary comparative experiments of creep feed grinding with an... In order to grind the ceramic blade surface with the Numerical Control contour evolution ultrasonic grinding method using the simple shape grinding wheel, primary comparative experiments of creep feed grinding with and without ultrasonic vibration were carried out to grind Al2O3 ceramics so as to implore the effects of different process parameters on the machined surface quality. It can be concluded that when the direction of ultrasonic vibration is parallel to the direction of creep feed, the value of the surface roughness will be decreased; otherwise the surface quality will become worse. With the ultrasonic grinding method, the slower feed-rate, the smaller grinding depth, the higher grinding speed and the compound feed grinding method should be applied in order to improve the surface quality. The creep feed grinding meehanisms with and without ultrasonic vibration were analyzed theoretically from the experimental results. With the selected grinding parameters resulted from the experiments, the feasibility experiment of ultrasonic grinding ceramic blade surface was cartied out. 展开更多
关键词 CERAMICS ultrasonic grinding creep feed grinding surface quality profile grinding
下载PDF
Vibration coupling effects and machining behavior of ultrasonic vibration plate device for creep-feed grinding of Inconel 718 nickel-based superalloy 被引量:7
10
作者 Yang CAO Yejun ZHU +3 位作者 Wenfeng DING Yutong QIU Lifeng WANG Jiuhua XU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第2期332-345,共14页
Ultrasonic vibration-assisted grinding(UVAG)is an effective and promising method for machining of hard-to-cut materials.This article proposed an ultrasonic vibration plate device enabling the longitudinal full-wave an... Ultrasonic vibration-assisted grinding(UVAG)is an effective and promising method for machining of hard-to-cut materials.This article proposed an ultrasonic vibration plate device enabling the longitudinal full-wave and transverse half-wave(L2T1)vibration mode for UVAG.The characteristics of two-dimensional coupled vibration in different directions were analyzed on the basis of apparent elastic method and finite element method.Furthermore,a correction factor was applied to correct the frequency error caused by the apparent elastic method.Finally,the comparative experiments between the conventional creep-feed grinding and UVAG of Inconel 718 nickel-based superalloy were carried out.The results indicate that the apparent elastic method with the correction factor is accurate for the design of plate device under the L2T1 vibration mode.Compared with the conventional creep-feed grinding,the UVAG causes the reduction of grinding force and the improvement of machined surface quality of Inconel 718 nickel-based superalloy.Furthermore,under the current experimental conditions,the optimal ultrasonic vibration amplitude is determined as 6μm,with which the minimum surface roughness is achieved. 展开更多
关键词 Apparent elastic method Machining behavior ultrasonic vibration-assisted grinding ultrasonic vibration plate device Vibration coupling effects
原文传递
Thermomechanical coupling effect on characteristics of oxide film during ultrasonic vibration-assisted ELID grinding ZTA ceramics 被引量:6
11
作者 Fan CHEN Guangxi LI +1 位作者 Bo ZHAO Wenbo BIE 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第6期125-140,共16页
Ultrasonic vibration-assisted ELID(UVA-ELID)grinding is utilized as a novel and highly efficient processing method for hard and brittle materials such as ceramics.In this study,the UVA-ELID grinding ZTA ceramics is em... Ultrasonic vibration-assisted ELID(UVA-ELID)grinding is utilized as a novel and highly efficient processing method for hard and brittle materials such as ceramics.In this study,the UVA-ELID grinding ZTA ceramics is employed to investigate the influence of thermomechanical loading on the characteristics of oxide film.Based on the fracture mechanics of material,the model of internal stress for oxide film damage is proposed.The thermomechanical loading is composed of mechanical force and the thermal stress generating from grinding temperature.The theoretical model is established for the mechanical force,thermal stress and internal stress respectively.Then the finite element analysis method is used to simulate the theoretical model.The mechanical force and grinding temperature is measured during the actual grinding test.During the grinding process,the effect of grinding wheel speed and grinding depth on the thermomechanical force and the characteristics of oxide film is analyzed.Compared with the conventional ELID(CELID)grinding,the mechanical force decreased by 25.6%and 22.4%with the increase of grinding wheel speed and grinding depth respectively,and the grinding temperature declined by 10.7%and12.8%during the UVA-ELID grinding.The thermal stress in the latter decreased by 16.3%and20.8%respectively,and internal stress reduced by 12.3%and 15.6%.It was experimentally found that the topographies of oxide layer on the surface of the wheel and the machined surface in the latter was better than that in the former.The results indicate that the action of ultrasonic vibration establish a significant effect on the processing.Subsequently,it should be well considered for future reference when processing the ZTA ceramics. 展开更多
关键词 Oxide film Surface quality Thermomechanical loading ultrasonic vibration-assisted ELID grinding ZTA ceramics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部