In this paper, we describe a modal expansion approach for the analysis of the selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers (EMATs). With the modal expansion approach for wave...In this paper, we describe a modal expansion approach for the analysis of the selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers (EMATs). With the modal expansion approach for waveguide excitation, an analytical expression of the Lamb wave's mode expansion coefficient is deduced, which is related to the driving frequency and the geometrical parameters of the EMAT's meander coil, and lays a theoretical foundation for exactly analyzing the selective generation of Larnb waves with EMATs. The influences of the driving frequency on the mode expansion coefficient of ultrasonic Lamb waves are analyzed when the EMAT's geometrical parameters are given. The numerical simulations and experimental examinations show that the ultrasonic Lamb wave modes can be effectively regulated (strengthened or restrained) by choosing an appropriate driving frequency of EMAT, with the geometrical parameters given. This result provides a theoretical and experimental basis for selectively generating a single and pure Lamb wave mode with EMATs.展开更多
In this paper, defects detection in brazed weldment with lattice structure is studied using ultrasonic Lamb wave. Based on the ultrasonic guided wave theory, the frequency dispersion curves for phase and group velocit...In this paper, defects detection in brazed weldment with lattice structure is studied using ultrasonic Lamb wave. Based on the ultrasonic guided wave theory, the frequency dispersion curves for phase and group velocity of I Cr18Ni9Ti are obtained by solving the Rayleigh-Lamb equation. The incident angles of different modes are determined through theoretical calculation and experimental analyses. Artificial defects of through-wall slots with different dimensions are made and tested. Experimental scattering effects of the fundamental symmetric mode S2 and asymmetric modes A1 and A0 are analysed and compared. The results show that mode Ao is suitable for detecting artificial defect, and the amplitude of the received signals are in good agreement with the defect size. Brazed weldment specimen containing lack of brazing with certain dimensions is made. Using the same methodology, scattering effects produced by weld defects are measured. The results show that the clutter wave brought about by the filler metal will certainly disturbs the identification of defect signal. But, when the defect is 3.0 mm in width, the presented mode Ao could be used potentially.展开更多
Changes(degradations) in the mechanical properties of solid plates induced by cyclic fatigue loading will influence the features of ultrasonic Lamb wave propagation,such as dispersion and attenuation.This paper has qu...Changes(degradations) in the mechanical properties of solid plates induced by cyclic fatigue loading will influence the features of ultrasonic Lamb wave propagation,such as dispersion and attenuation.This paper has qualitatively analyzed the feasibility of using the amplitude-frequency characteristics and the stress wave factors(SWFs) of ultrasonic Lamb wave propagation to assess fatigue damage in solid plates.Liquid wedge transducers located on the surface of solid plates tested are used to generate and detect the Lamb wave signals.Based on the Ritec-SNAP ultrasonic measurement system,the experimental setup for assessing the degree of fatigue damage in solid plates using ultrasonic Lamb wave approach has been established.For several rolled aluminum sheets subjected to tension-tension cyclic loading,the experimental examinations have been performed for the relationships between the amplitude-frequency characteristics of ultrasonic Lamb wave propagation and the numbers of loading cycles(denoted by N),as well as the correlations between the Lamb wave SWFs and N.The experimental results show that the Lamb wave SWFs decrease monotonously and sensitively with the increment of cycles of fatigue loading.Based on the correlations between the Lamb wave SWFs and N,it is further verified that ultrasonic Lamb wave propagation combined with the Lamb wave SWFs can be used to effectively assess early fatigue damage in solid plates.展开更多
A low-frequency multi-mode ultrasonic Lamb wave method suitable for character- izing the thickness, the density and the elastic constants of the ultra-thin transversely isotropic laminate composite is presented. The &...A low-frequency multi-mode ultrasonic Lamb wave method suitable for character- izing the thickness, the density and the elastic constants of the ultra-thin transversely isotropic laminate composite is presented. The 'ultra-thin' here means that the thickness of the plate is much less than the wavelength of the ultrasonic wave so that the echoes from the front and back faces of the plate can't be separated in the time domain. The dispersion equations for the low frequency ultrasonic Lamb waves with the propagation directions parallel and vertical to the fiber direction are derived. In conjunction with the least square algorithm method, the secant algorithm is used to estimate the parameters of the ultra-thin fiber-reinforced composite layer. The evaluation errors and the sensitivity of the method to different paramters of the thin composite are analyzed. The technique has been used to characterize the ultra-thin grass fiber reinforced PES composite with thickness down to ten percents of the ultrasonic wavelength. It is observed that the agreement between the nominal and the estimation values is reasonably good.展开更多
Bone fatigue accumulation is a factor leading to bone fracture,which is a progressive process of microdamage deteriorating under long-term and repeated stress.Since the microdamage of the early stage in bone is diffic...Bone fatigue accumulation is a factor leading to bone fracture,which is a progressive process of microdamage deteriorating under long-term and repeated stress.Since the microdamage of the early stage in bone is difficult to be investigated by linear ultrasound,the second harmonic generation method in nonlinear ultrasound technique is employed in this paper,which is proved to be more sensitive to microdamage.To solve the deficiency that the second harmonic component is easily submerged by noise in traditional nonlinear measurement,a weighted chirp coded sinusoidal signal was applied as the ultrasonic excitation,while pulse inversion is implemented at the receiving side.The effectiveness of this combination to improve the signal-to-noise ratio has been demonstrated by in vitro experiment.Progressive fatigue loading experiments were conducted on the cortical bone plate in vitro for microdamage generation.There was a significant increase in the slope of the acoustic nonlinearity parameter with the propagation distance(increased by 8%and 24%respectively)when the bone specimen was at a progressive level of microdamage.These results indicate that the coded nonlinear ultrasonic method might have the potential in diagnosing bone fatigue.展开更多
Brazed weldment with lattice structure has been widely used in aerospace industry. The non-destructive testing is often difficult because of the poor inspection accessibility. The present paper illustrates how the pla...Brazed weldment with lattice structure has been widely used in aerospace industry. The non-destructive testing is often difficult because of the poor inspection accessibility. The present paper illustrates how the plane-like defect lack of brazing can be detected rapidly in this kind of structure by using ultrasonic Lamb wave. Experimental weldments are prepared and weld defect are tested using S2 mode Lamb wave. Acoustic shadow technique is employed based on Lamb wave testing method. The character of the tested D-scan image and A-scan signal is studied. The experimental results show that acoustic shadow based Lamb wave testing method is effective in detecting through-wall lack of brazing. Meanwhile, the D-scan tested data can be rapidly collected and easily interpreted compared with pulse echo bused Lamb wave testing method.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11474361 and 11274388)
文摘In this paper, we describe a modal expansion approach for the analysis of the selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers (EMATs). With the modal expansion approach for waveguide excitation, an analytical expression of the Lamb wave's mode expansion coefficient is deduced, which is related to the driving frequency and the geometrical parameters of the EMAT's meander coil, and lays a theoretical foundation for exactly analyzing the selective generation of Larnb waves with EMATs. The influences of the driving frequency on the mode expansion coefficient of ultrasonic Lamb waves are analyzed when the EMAT's geometrical parameters are given. The numerical simulations and experimental examinations show that the ultrasonic Lamb wave modes can be effectively regulated (strengthened or restrained) by choosing an appropriate driving frequency of EMAT, with the geometrical parameters given. This result provides a theoretical and experimental basis for selectively generating a single and pure Lamb wave mode with EMATs.
基金This project is supported by International Cooperation Project (2007DFR70070), National Natural Science Foundation (50775054), Fundamental Research Funds for the Central Universities ( Grant No. HIT. NSRIF. 2009035 ) and China Postdoctoral Seienee Foundation (20080440873).
文摘In this paper, defects detection in brazed weldment with lattice structure is studied using ultrasonic Lamb wave. Based on the ultrasonic guided wave theory, the frequency dispersion curves for phase and group velocity of I Cr18Ni9Ti are obtained by solving the Rayleigh-Lamb equation. The incident angles of different modes are determined through theoretical calculation and experimental analyses. Artificial defects of through-wall slots with different dimensions are made and tested. Experimental scattering effects of the fundamental symmetric mode S2 and asymmetric modes A1 and A0 are analysed and compared. The results show that mode Ao is suitable for detecting artificial defect, and the amplitude of the received signals are in good agreement with the defect size. Brazed weldment specimen containing lack of brazing with certain dimensions is made. Using the same methodology, scattering effects produced by weld defects are measured. The results show that the clutter wave brought about by the filler metal will certainly disturbs the identification of defect signal. But, when the defect is 3.0 mm in width, the presented mode Ao could be used potentially.
基金supported by the National Natural Science Foundation of China (Grant No. 10674180)the National Science Foundation Project of Chongqing Science and Technology Commission (Grant No. 2008BB0140)
文摘Changes(degradations) in the mechanical properties of solid plates induced by cyclic fatigue loading will influence the features of ultrasonic Lamb wave propagation,such as dispersion and attenuation.This paper has qualitatively analyzed the feasibility of using the amplitude-frequency characteristics and the stress wave factors(SWFs) of ultrasonic Lamb wave propagation to assess fatigue damage in solid plates.Liquid wedge transducers located on the surface of solid plates tested are used to generate and detect the Lamb wave signals.Based on the Ritec-SNAP ultrasonic measurement system,the experimental setup for assessing the degree of fatigue damage in solid plates using ultrasonic Lamb wave approach has been established.For several rolled aluminum sheets subjected to tension-tension cyclic loading,the experimental examinations have been performed for the relationships between the amplitude-frequency characteristics of ultrasonic Lamb wave propagation and the numbers of loading cycles(denoted by N),as well as the correlations between the Lamb wave SWFs and N.The experimental results show that the Lamb wave SWFs decrease monotonously and sensitively with the increment of cycles of fatigue loading.Based on the correlations between the Lamb wave SWFs and N,it is further verified that ultrasonic Lamb wave propagation combined with the Lamb wave SWFs can be used to effectively assess early fatigue damage in solid plates.
基金the National Natural Science Foundation of China (No. 69631020) and theOffice of Naval Research of America (00014-93-1-0340).
文摘A low-frequency multi-mode ultrasonic Lamb wave method suitable for character- izing the thickness, the density and the elastic constants of the ultra-thin transversely isotropic laminate composite is presented. The 'ultra-thin' here means that the thickness of the plate is much less than the wavelength of the ultrasonic wave so that the echoes from the front and back faces of the plate can't be separated in the time domain. The dispersion equations for the low frequency ultrasonic Lamb waves with the propagation directions parallel and vertical to the fiber direction are derived. In conjunction with the least square algorithm method, the secant algorithm is used to estimate the parameters of the ultra-thin fiber-reinforced composite layer. The evaluation errors and the sensitivity of the method to different paramters of the thin composite are analyzed. The technique has been used to characterize the ultra-thin grass fiber reinforced PES composite with thickness down to ten percents of the ultrasonic wavelength. It is observed that the agreement between the nominal and the estimation values is reasonably good.
基金Project supported by the China Postdoctoral Science Foundation(Grant No.2021M690709)the National Natural Science Foundation of China(Grant Nos.11827808,11874289,11804056,and 12034005)+1 种基金the Program of Shanghai Academic Research Leader(Grant No.19XD1400500)the Project of Shanghai Science and Technology Innovation Plan(Grant No.19441903400).
文摘Bone fatigue accumulation is a factor leading to bone fracture,which is a progressive process of microdamage deteriorating under long-term and repeated stress.Since the microdamage of the early stage in bone is difficult to be investigated by linear ultrasound,the second harmonic generation method in nonlinear ultrasound technique is employed in this paper,which is proved to be more sensitive to microdamage.To solve the deficiency that the second harmonic component is easily submerged by noise in traditional nonlinear measurement,a weighted chirp coded sinusoidal signal was applied as the ultrasonic excitation,while pulse inversion is implemented at the receiving side.The effectiveness of this combination to improve the signal-to-noise ratio has been demonstrated by in vitro experiment.Progressive fatigue loading experiments were conducted on the cortical bone plate in vitro for microdamage generation.There was a significant increase in the slope of the acoustic nonlinearity parameter with the propagation distance(increased by 8%and 24%respectively)when the bone specimen was at a progressive level of microdamage.These results indicate that the coded nonlinear ultrasonic method might have the potential in diagnosing bone fatigue.
基金The work is supported by the National Natural Science Foundation of China (51005056,51175113), the Fundamental Research Funds for the Central Universities ( Grant No. HIT. NSRIF. 2009035).
文摘Brazed weldment with lattice structure has been widely used in aerospace industry. The non-destructive testing is often difficult because of the poor inspection accessibility. The present paper illustrates how the plane-like defect lack of brazing can be detected rapidly in this kind of structure by using ultrasonic Lamb wave. Experimental weldments are prepared and weld defect are tested using S2 mode Lamb wave. Acoustic shadow technique is employed based on Lamb wave testing method. The character of the tested D-scan image and A-scan signal is studied. The experimental results show that acoustic shadow based Lamb wave testing method is effective in detecting through-wall lack of brazing. Meanwhile, the D-scan tested data can be rapidly collected and easily interpreted compared with pulse echo bused Lamb wave testing method.