Ultrasonic welding is an effective ways to achieve a non-reactive/immiscible heterogeneous metal connection, such as the connection of magnesium alloy and titanium alloy. But the thermal mechanism of magnesium alloy/t...Ultrasonic welding is an effective ways to achieve a non-reactive/immiscible heterogeneous metal connection, such as the connection of magnesium alloy and titanium alloy. But the thermal mechanism of magnesium alloy/titanium alloy ultrasonic welding has not been defined clearly. In this paper, the experimental and the finite element analysis were adopted to study the thermal mechanism during welding. Through the test, the temperature variation law during the welding process is obtained, and the accuracy of the finite element model is verified. The microscopic analysis indicates that at the welding time of 0.5 s, the magnesium alloy in the center of the solder joint is partially melted and generates the liquid phase. Through the finite element analysis, the friction coefficient of the magnesium–titanium ultrasonic welding interface can be considered as an average constant value of 0.28. The maximum temperature at the interface can exceed 600 ℃ to reach the melting point temperature of the magnesium alloy. The plastic deformation begins after 0.35 s and occurs at the magnesium side at the center of the interface.展开更多
A measuring principle for acoustic power in plastics ultrasonic welding process is introduced in this paper. Signal detection circuits of current, voltage, frequency, power for ultrasonic transducer of plastic ultraso...A measuring principle for acoustic power in plastics ultrasonic welding process is introduced in this paper. Signal detection circuits of current, voltage, frequency, power for ultrasonic transducer of plastic ultrasonic welder are developed. A computer controlled measuring system is designed to sample the signals of welding process parameters. By using the designed system, the acoustic power curve during welding is calculated, saved, and displayed. And the relation between fusion state of plastics workpieces and input energy of joint is analyzed.展开更多
Ultrasonic welding (USW) is a process of solid-state joining which has been recognized as a promising technology in a number of industrial applications. USW is particularly suitable for joining similar or dissimilar...Ultrasonic welding (USW) is a process of solid-state joining which has been recognized as a promising technology in a number of industrial applications. USW is particularly suitable for joining similar or dissimilar non-ferrous metals and their alloys. The process parameters, such as vibration amplitude, welding time and clamping force, play the major roles in determining the strength of the joints. The present paper focuses on this kind of investigation in order to evidence the effects of the welding parameters and, most of all, their combinations on the maximum peel load of T-peel spot welded joints made of C1100 Cu thin sheets. Response suoCace methodology ( RSM) was applied to optimize the welding conditions that maximized the peel load of joints produced by USW. Analysis of variance showed that the combination of the vibration amplitude and welding time had the strongest influence on the peel load.展开更多
A measurement system for high power electrical variables with ultrasonic frequency was established. It can measure the effective values of the voltage and the current, the active power, the phase difference of voltage...A measurement system for high power electrical variables with ultrasonic frequency was established. It can measure the effective values of the voltage and the current, the active power, the phase difference of voltage and current, the frequency of the transducer during ultrasonic welding and cutting. In sampling circuits of the system, the measured current is sensed by using a no capacitance and no inductance precision resistor and is treated with a difference amplifier, the measured voltage is processed by using a proportional amplifier. For achieving good amplitude frequency characteristics and rapid measurement of high frequency signals, the resistors, capacitors and amplifiers used in the system are rationally selected. Calibrating experiments show that relative errors are less than 1% for voltage and current effective values and less than 2.5% for active power, and absolute errors are ±1 Hz for frequency and ±1.7° for phase difference of voltage and current in the range of 17~23 kHz .展开更多
Finite element method was adopted to investigate the temperature profile during ultrasonic welding of PEEK (polyetheretherketone ). The comparison of temperature fields was made among the triangular, semicircular an...Finite element method was adopted to investigate the temperature profile during ultrasonic welding of PEEK (polyetheretherketone ). The comparison of temperature fields was made among the triangular, semicircular and rectangular energy directors. The results show that the highest temperature appears on the sample surfaces in the welding interface. For triangular and semicircular energy directors, the gradient of their temperature fields become larger with welding amplitude increasing, and the temperature decreases along the normal line of surface. The melting point can be rapidly reached before large scale plastic deformation occurs as welding amplitude exceeds 25 μm for triangular energy and 35 μm for semicircular energy director. But for the rectangular energy director, its temperature field is dispersed even under 35μm welding amplitude.展开更多
The energy conversion during ultrasonic plastic welding is analyzed on the basis of the theory of vis- coelastic mechanics,.The temperature field and the temperature change of the ABS specimen with ener- gy direc...The energy conversion during ultrasonic plastic welding is analyzed on the basis of the theory of vis- coelastic mechanics,.The temperature field and the temperature change of the ABS specimen with ener- gy director during ultrasonic welding is simulated with finite element method(FEM). In the simu- lation process,the melting of the energy energy is also considered. The calculation results are in good agreement with the temperature measurement results, which proves that the simulation results are reli- able.展开更多
Ultrasonic welding process can be used for bonding metal foils which is the fundament of ultrasonic consolidation (UC). UC process can be used to embed reinforcement fibres such as SiC fibres within an aluminum matr...Ultrasonic welding process can be used for bonding metal foils which is the fundament of ultrasonic consolidation (UC). UC process can be used to embed reinforcement fibres such as SiC fibres within an aluminum matrix materials. In this research we are investigating the phenomena occurring in the microstructure of the parts during ultrasonic welding process to obtain better understanding about how and why the process works. High-resolution electron backscatter diffraction ( EBSD ) is used to study the effects of the vibration on the evolution of microstructure in AA3003. The inverse pole figures (IPF) and the correlated misorientation angle distribution of the mentioned samples are obtained. The characteristics of the crystallographic orientation, the grain structure and the grain boundary are analyzed to find the effect of ultrasonic vibration on the microstructure and microtexture of the bond. The ultrasonic vibration will lead to exceptional refinement of grains to a micron level along the bond area and affect the crystallographic orientation. Ultrasonic vibration results in a very weak texture. Plastic flow occurs in the grain after welding process and there is additional plastic flow around the fibre which leads to the fibre embedding.展开更多
Galvanic corrosion of AZ31B joined with bare or Zn-coated DP590 steel by ultrasonic spot welding or linear friction stir welding was quantitatively studied by pre-defining anode and cathode in the lap joint samples. C...Galvanic corrosion of AZ31B joined with bare or Zn-coated DP590 steel by ultrasonic spot welding or linear friction stir welding was quantitatively studied by pre-defining anode and cathode in the lap joint samples. Corrosion volume and depth from Mg anode surfaces exposed to 0.1 M sodium chloride solution was analyzed as functions of cathode surface type and welding method. Characterization of as-welded joints was performed to identify any microstructural feature of the bonding zone that could impact galvanic corrosion behavior.COMSOL modeling with modified user subroutine was conducted to simulate the progression of Mg corrosion in the same joint and electrode configurations used for the corrosion experiments. The experimental results indicated that Zn-coated cathode surface can reduce Mg galvanic corrosion significantly as galvanic polarization and cathodic current on Zn-coated surface remained relatively low for Mg in the weld joints.COMSOL modeling described the growth of Mg galvanic corrosion in a reasonable manner but showed limitation by underestimating the corrosion volume as it did not capture self-corrosion.展开更多
Today ultrasonic power technique is consider a mandatory technique which is always entered in many processes such as in metal and plastic welding to overcomes many issues,with aided of applying force(pressure)and supp...Today ultrasonic power technique is consider a mandatory technique which is always entered in many processes such as in metal and plastic welding to overcomes many issues,with aided of applying force(pressure)and supplied high frequency vibration,a solid-state weld can be generated by ultrasonic metal welding technique.That gives a technique the ability to join not only a small component,whereas also to join thicker specimens,which depends on a proper control of matching welding conditions.Therefore a welding performance can be studied and compared after designed welding horn to resonance at frequencies of 20 kHz and 40 kHz.The analyses of the designed horn are completed through use a vibration mathematical expressions,modal and harmonic analyses to ensure the weldability due to applying ultrasonic power to the working area and also to compare the performance of joint at using two resonance frequencies of 20 kHz and 40 kHz.The dimensions of the horns were determined to match the selected resonance frequencies,which the lengths were calculated as 132 mm and 66 mm respectively.The analysis of the exciting model indicates that the axial vibration modes of 19,584 Hz and 39,794 Hz are obtained in 10th mode,while the two frequency values are recorded 19,600 Hz and 39,800 Hz from the frequency response of the two horns.The weld strength between Al and Cu specimens with a thickness 0.5 mm was evaluated using a tensile test,which the analyses were obtained under using different welding pressure and varied amplitudes.The results were recorded within exciting a horn with two different resonance frequencies,show the enhancement of weld strength and quality through control of stepping amplitude,the enhancement means obtain good strength of the weld,reduce sticking horn to specimen,and lower specimen marking.展开更多
Lightweight ZEK100-0 Mg alloy and A16022-T43 Al alloy with an Ag interlayer were joined via ultrasonic spot welding(USW),focusing on the microstructural change and tensile lap shear strength of the welded joints in re...Lightweight ZEK100-0 Mg alloy and A16022-T43 Al alloy with an Ag interlayer were joined via ultrasonic spot welding(USW),focusing on the microstructural change and tensile lap shear strength of the welded joints in relation to welding energy.Mg/Al interface was superseded by Mg/Ag and Al/Ag interfaces,and unfavorable Mg门A-intermetallic compound was eliminated.Ag foil was observed to be intact in the nugget center,while it was broken or dissolved at the nugget edge at high welding energy levels.The diffusion layer at the Mg/Ag interface consisted of two distinctive sub-layers:Mg3Ag intermetallic compound adjoining Ag foil,and Mg3Ag-l-Mg eutectic structure adjacent to Mg.Only a thin diffusion layer consisting mainly of Ag3Al occurred al lhe Al/Ag interface.The tensile lap shear strength first increased,reached its peak value,and then decreased with increasing welding energy.The shear strength achieved in the present study was〜31%higher than that of the joint without interlayer.Interfacial failure occurred at all energy levels,with Ag foil particles or fragments being stuck on both Mg and Al sides due to its intense interaction with Mg and Al via accelerated diffusion during USW.The results obtained pave the way for the challenging dissimilar welding between Mg and Al alloys.展开更多
The influence of ultrasonic vibrations on microstructure and mechanical properties of the AZ91-C magnesium alloy after ultrasonic assisted friction stir welding(UaFSW)in comparison with conventional friction stir weld...The influence of ultrasonic vibrations on microstructure and mechanical properties of the AZ91-C magnesium alloy after ultrasonic assisted friction stir welding(UaFSW)in comparison with conventional friction stir welding(FSW)was investigated.The FSW was applied at the rotational speed of 1400 r/min and welding speed of 40 mm/min and no defects were observed.Using the same welding parameters,the process was carried out with inducing ultrasonic vibrations to the weld line at the amplitude of 15μm.The microstructure of the specimens was observed with optical and scanning electron microscopy.The results indicate that a very fine microstructure is obtained in UaFSW with respect to that of conventional FSW.Moreover,β-Mg17Al12 coarse dendrites are segregated to very fine and partly spherical particles that homogeneously distribute inα-Mg matrix.This remarkably-modified morphology of microstructure attributed to severe plastic deformation comes from ultrasonic vibration and friction stirring effect.Tensile and hardness tests were performed to evaluate the mechanical properties of the welds.According to the results,the vibration greatly improves the mechanical properties of the conventional FSW joint.The tensile strength and hardness are increased from 195 MPa and HV 79 in conventional FSW to 225 MPa and HV 87 in UaFSW,respectively.展开更多
Sound dissimilar lap joints were achieved via ultrasonic spot welding (USW), which is a solid-state joining technique. The addition of Sn interlayer during USW effectively blocked the formation of brittle Al12Mg17 i...Sound dissimilar lap joints were achieved via ultrasonic spot welding (USW), which is a solid-state joining technique. The addition of Sn interlayer during USW effectively blocked the formation of brittle Al12Mg17 intermetallic compound in the Mg-Al dissimilar joints without interlayer, and led to the presence of a distinctive composite-like Sn and Mg2Sn eutectic structure in both Mg- Al and Mg-high strength low alloy (HSLA) steel joints. The lap shear strength of both types of dissimilar joints with a Sn interlayer was significantly higher than that of the corresponding dissimilar joints without interlayer. Failure during the tensile lap shear tests occurred mainly in the mode of cohesive failure in the Mg- Al dissimilar joints and in the mode of partial cohesive failure and partial nugget pull-out in the Mg-HSLA steel dissimilar joints.展开更多
Ultrasonic assisted friction stir welding (UAFSW) is a recent modification of conventional friction stir welding, which adds ultrasonic energy directly into the friction stir welding area by the pin. In this study, ...Ultrasonic assisted friction stir welding (UAFSW) is a recent modification of conventional friction stir welding, which adds ultrasonic energy directly into the friction stir welding area by the pin. In this study, 2A12 aluminum alloy was welded by this process and conventional, respectively. The tensile tests, microstructure and fracture surface of FSW joint and UAFSW joint were analyzed. The research results show that the surface forming texture of ultrasonic assisted friction stir welding joint, compared with conventional, is finer and more uniform, showing metallic matte color. The grains are much finer in weld nugget zone, thermo-mechanically affected zone and heat-affected zone; S-phase particles size is much smaller and distribution is more homogeneous in the matrix. The tensile strength of UAFSW joint is 94. 13% of base metal, and the elongation is 11.77%. The tensile strength of FSW joint is 83.15% of base metal, and the elongation is 8.81%. The tests results reveal that ultrasonic vibration can improve the tensile strength and the elongation of welded joints.展开更多
The present study focuses on interface microstructure and joint formation.AA6061 aluminum alloy(Al)and commercial pure titanium(Ti)joints were welded by ultrasonic spot welding(USW).The welding energy was 1100-3200 J....The present study focuses on interface microstructure and joint formation.AA6061 aluminum alloy(Al)and commercial pure titanium(Ti)joints were welded by ultrasonic spot welding(USW).The welding energy was 1100-3200 J.The Al-Ti joint appearance and interface microstructure were observed mainly via optical microscopy and field emission scanning electron microscopy.Results indicated that a good joint can be achieved only with proper welding energy of 2150 J.No significant intermetallic compound(IMC)was found under all conditions.The high energy barriers of Al-Ti and difficulties in diffusion were the main reasons for the absence of IMC according to kinetic analysis.The heat input is crucial for the material plastic flow and bonding area,which plays an important role in the joint formation.展开更多
The ultrasonic welding process for wires is being largely used on industry mainly on applications that involve the connectionbetween similar or different metals. The biggest benefit of this technology is the possibili...The ultrasonic welding process for wires is being largely used on industry mainly on applications that involve the connectionbetween similar or different metals. The biggest benefit of this technology is the possibility to perform the weld without additionmaterials, like terminals, metal rings or tapes. Manufacturing of wiring harnesses demands a significant amount of joining, such aswelding, crimping or soldering, to fulfill the desired layout of the harnesses and capacity requirements, but conventional connectionprocesses, face difficulties in joining multiple cross sections mainly due to the characteristics of the processes and equipment in use.Ultrasonic metal welding process overcomes these issues due to the solid-state characteristics inherent to the process itself that includethe excellent electrical properties of the joint. Several researches on ultrasonic metal welding are being done to define the fundamentalmechanisms behind this process and it is being seen that they are completely dependent on the cross section to be welded. With thisresearch we are trying to develop methods for process characterization and define acceptable quality parameters in this process. Themain topics addressed in this paper are the characterization the weld formation using copper-to-copper wires using optical microscopyand the analysis of insulation material when submitted to different thermal conditions.展开更多
The numerical simulation of arc was carried out for both conventional melt inert gas(MIG)welding and ultrasonic assisted melt inert gas(U-MIG)welding.Based on the model established by Fluent,the arc shape,temperature ...The numerical simulation of arc was carried out for both conventional melt inert gas(MIG)welding and ultrasonic assisted melt inert gas(U-MIG)welding.Based on the model established by Fluent,the arc shape,temperature field,and potential distribution were simulated.The study found that the shape of the arc changed when ultrasonic was added radially;the high-temperature area of the arc stretched,and the temperature peak increased.But as the current increased,the increase in temperature decreased.In addition,under the same conditions,the potential of U-MIG decreased and the pressure on the workpiece increased.To verify the accuracy of the simulation results,welding experiments under identical conditions were carried out,and a high-speed camera was used to collect dynamic pictures of the arc.The simulation results were in a favorable agreement with the experimental results,which provided a certain reference value for ultrasonic assisted arc welding.展开更多
The paper explains the comparison of magnetic pulse welding method which belongs to non-conventional machining methods with other conventional and non-conventional welding methods which include brazing, explosive weld...The paper explains the comparison of magnetic pulse welding method which belongs to non-conventional machining methods with other conventional and non-conventional welding methods which include brazing, explosive welding, ultrasonic welding, tungsten and metal inert gas and roll bonding. Magnetic pulse welding differs completely in technology when compared with conventional welding processes because the process is done with high velocity and without heat or consumable materials. It is better than other methods because it's cold process and can be done without any heat affect zone. In addition, there is no need for rework and post welding cleaning and there is no scrap problem. Magnetic pulse welding is a green process used to design and build light structure with high strength to reduce the weight and the energy. Magnetic pulse welding reduces the risk of corrosion by limiting the metallic interaction to just the two metals welded; therefore, it replaces the brazing method. Also, it is better than the explosive welding method because there is no risk of handling the explosive material and there is no noise. The part assembly by magnetic pulse welding is stronger than the parts assembly by tungsten and metal inert gas welding and it is easy to achieve a good aesthetic with high speed. Therefore, using magnetic pulse welding technology will not affect the environment.展开更多
The joining of metal and polymer is an increasingly important method to get lightweight components in the development of manufacturing industry- nowadays. In this artiele, metal and polymer lap joint was achieved by m...The joining of metal and polymer is an increasingly important method to get lightweight components in the development of manufacturing industry- nowadays. In this artiele, metal and polymer lap joint was achieved by means of resistance spot welding (RSW) and ultrasonic assistance welding (UAW). The joining mechanism of lap joint was analyzed by OM, TEM on microstructure at the interface of lap joints and XPS and IR spectra was discussed based on the following different ones: mechanical-interlocking, diffusion bond and coordination bond. The results showed that it was the combined action that played an important role in the effective joining work. Besides, ultrasonic assistance was used in the study to aid welding process based on its high-frequency ultrasonic vibration, which made joints shaping better and improved tensile strength visibly contrast to joints with the same lower heat input parameters.展开更多
The effect of Zn interlayer on the microstructural evolution and mechanical behavior of dissimilar ultrasonic-spot-welded Al/Cu joints was investigated.The tensile lap shear strength in relation to welding energy was ...The effect of Zn interlayer on the microstructural evolution and mechanical behavior of dissimilar ultrasonic-spot-welded Al/Cu joints was investigated.The tensile lap shear strength in relation to welding energy was analyzed.The experimental results show that two intermetallic compounds,Cu5Zn8 and Al2Cu,were generated at the interface of the ultrasonic-spotwelded Al/Cu joint with a Zn interlayer.The primary joining mechanisms of the joint included the intermetallic compound bonding and metallic bonding caused by solid shear plastic deformation.Meanwhile,with increasing welding energy,the plastic deformation of the material became more substantial.With increasing welding energy,the tensile lap shear strength of the joints first increased and then decreased for the ultrasonic-spot-welded Al/Cu joints with and without Zn interlayers.Under the energy input of 700 J,the bearing load capacity of the ultrasonic-spot-welded Al/Cu joints with a Zn interlayer improved signifi cantly due to the observed intermetallic compound(Cu5Zn8).展开更多
The coupling effects of ultrasonic excitation and high-strain-rate deformation are the core factors for weld formation during ultrasonic welding.However,interfacial deformation behavior still shrouds in uncer-tainty b...The coupling effects of ultrasonic excitation and high-strain-rate deformation are the core factors for weld formation during ultrasonic welding.However,interfacial deformation behavior still shrouds in uncer-tainty because of the contradictory features between mutual dislocation retardation caused by severely frictional deformation and ultrasonic-accelerated dislocation motion.[101]and[111]-oriented Cu single crystals which tended to form geometrically necessary boundaries(GNBs)were selected as the welding substrates to trace the uniquely acoustoplastic effects in the interfacial region under the ultrasonically excited high-strain-rate deformation.It was indicated that for a low energy input,micro-welds localized at the specific interface region,and equiaxed dislocation cells substituting for GNBs dominated in the ini-tial single crystal rotation region.As the welding energy increased,continuous shear deformation drove the dynamic recrystallization region covered by equiaxed grains to spread progressively.Limited discrete dislocations inside the recrystallized grains and nascent dislocation cells at the grain boundaries were ob-served in[101]and[111]joints simultaneously,suggesting that the ultrasonic excitation promoted motion of intragranular dislocation and pile-up along the sub-grain boundaries.The interfacial morphology be-fore and after expansion of recrystallization region all exhibited the weakening of orientation constraint on dislocation motion,which was also confirmed by the similar micro-hardness in joint interface.The first-principle calculation and applied strain-rate analysis further revealed that ultrasonic excitation en-hanced dislocation slipping,and enabled dislocation motion to accommodate severe plastic deformation at a high-strain-rate.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.U1764251,51775160)Fundamental Research Funds for the Central Universities of China(Grant No.DUT19LAB24)
文摘Ultrasonic welding is an effective ways to achieve a non-reactive/immiscible heterogeneous metal connection, such as the connection of magnesium alloy and titanium alloy. But the thermal mechanism of magnesium alloy/titanium alloy ultrasonic welding has not been defined clearly. In this paper, the experimental and the finite element analysis were adopted to study the thermal mechanism during welding. Through the test, the temperature variation law during the welding process is obtained, and the accuracy of the finite element model is verified. The microscopic analysis indicates that at the welding time of 0.5 s, the magnesium alloy in the center of the solder joint is partially melted and generates the liquid phase. Through the finite element analysis, the friction coefficient of the magnesium–titanium ultrasonic welding interface can be considered as an average constant value of 0.28. The maximum temperature at the interface can exceed 600 ℃ to reach the melting point temperature of the magnesium alloy. The plastic deformation begins after 0.35 s and occurs at the magnesium side at the center of the interface.
文摘A measuring principle for acoustic power in plastics ultrasonic welding process is introduced in this paper. Signal detection circuits of current, voltage, frequency, power for ultrasonic transducer of plastic ultrasonic welder are developed. A computer controlled measuring system is designed to sample the signals of welding process parameters. By using the designed system, the acoustic power curve during welding is calculated, saved, and displayed. And the relation between fusion state of plastics workpieces and input energy of joint is analyzed.
基金This study was supported by the National Natural Science Foundation of China (Grant No. 51175184).
文摘Ultrasonic welding (USW) is a process of solid-state joining which has been recognized as a promising technology in a number of industrial applications. USW is particularly suitable for joining similar or dissimilar non-ferrous metals and their alloys. The process parameters, such as vibration amplitude, welding time and clamping force, play the major roles in determining the strength of the joints. The present paper focuses on this kind of investigation in order to evidence the effects of the welding parameters and, most of all, their combinations on the maximum peel load of T-peel spot welded joints made of C1100 Cu thin sheets. Response suoCace methodology ( RSM) was applied to optimize the welding conditions that maximized the peel load of joints produced by USW. Analysis of variance showed that the combination of the vibration amplitude and welding time had the strongest influence on the peel load.
基金This work has been carried out with the support of National Natural Science Foundation(No.59675054)
文摘A measurement system for high power electrical variables with ultrasonic frequency was established. It can measure the effective values of the voltage and the current, the active power, the phase difference of voltage and current, the frequency of the transducer during ultrasonic welding and cutting. In sampling circuits of the system, the measured current is sensed by using a no capacitance and no inductance precision resistor and is treated with a difference amplifier, the measured voltage is processed by using a proportional amplifier. For achieving good amplitude frequency characteristics and rapid measurement of high frequency signals, the resistors, capacitors and amplifiers used in the system are rationally selected. Calibrating experiments show that relative errors are less than 1% for voltage and current effective values and less than 2.5% for active power, and absolute errors are ±1 Hz for frequency and ±1.7° for phase difference of voltage and current in the range of 17~23 kHz .
文摘Finite element method was adopted to investigate the temperature profile during ultrasonic welding of PEEK (polyetheretherketone ). The comparison of temperature fields was made among the triangular, semicircular and rectangular energy directors. The results show that the highest temperature appears on the sample surfaces in the welding interface. For triangular and semicircular energy directors, the gradient of their temperature fields become larger with welding amplitude increasing, and the temperature decreases along the normal line of surface. The melting point can be rapidly reached before large scale plastic deformation occurs as welding amplitude exceeds 25 μm for triangular energy and 35 μm for semicircular energy director. But for the rectangular energy director, its temperature field is dispersed even under 35μm welding amplitude.
文摘The energy conversion during ultrasonic plastic welding is analyzed on the basis of the theory of vis- coelastic mechanics,.The temperature field and the temperature change of the ABS specimen with ener- gy director during ultrasonic welding is simulated with finite element method(FEM). In the simu- lation process,the melting of the energy energy is also considered. The calculation results are in good agreement with the temperature measurement results, which proves that the simulation results are reli- able.
基金Acknowledgement The authors wish to thank the financial support for this research from the National Natural Science Foundation of China (Grant No. 50865007) and the Natural Science Foundation of Jiangxi Province (No. 2007GQC1825).
文摘Ultrasonic welding process can be used for bonding metal foils which is the fundament of ultrasonic consolidation (UC). UC process can be used to embed reinforcement fibres such as SiC fibres within an aluminum matrix materials. In this research we are investigating the phenomena occurring in the microstructure of the parts during ultrasonic welding process to obtain better understanding about how and why the process works. High-resolution electron backscatter diffraction ( EBSD ) is used to study the effects of the vibration on the evolution of microstructure in AA3003. The inverse pole figures (IPF) and the correlated misorientation angle distribution of the mentioned samples are obtained. The characteristics of the crystallographic orientation, the grain structure and the grain boundary are analyzed to find the effect of ultrasonic vibration on the microstructure and microtexture of the bond. The ultrasonic vibration will lead to exceptional refinement of grains to a micron level along the bond area and affect the crystallographic orientation. Ultrasonic vibration results in a very weak texture. Plastic flow occurs in the grain after welding process and there is additional plastic flow around the fibre which leads to the fibre embedding.
基金funded by the U.S. Department Energy’s Vehicle Technology Offices as a part of the Joining Core Program。
文摘Galvanic corrosion of AZ31B joined with bare or Zn-coated DP590 steel by ultrasonic spot welding or linear friction stir welding was quantitatively studied by pre-defining anode and cathode in the lap joint samples. Corrosion volume and depth from Mg anode surfaces exposed to 0.1 M sodium chloride solution was analyzed as functions of cathode surface type and welding method. Characterization of as-welded joints was performed to identify any microstructural feature of the bonding zone that could impact galvanic corrosion behavior.COMSOL modeling with modified user subroutine was conducted to simulate the progression of Mg corrosion in the same joint and electrode configurations used for the corrosion experiments. The experimental results indicated that Zn-coated cathode surface can reduce Mg galvanic corrosion significantly as galvanic polarization and cathodic current on Zn-coated surface remained relatively low for Mg in the weld joints.COMSOL modeling described the growth of Mg galvanic corrosion in a reasonable manner but showed limitation by underestimating the corrosion volume as it did not capture self-corrosion.
文摘Today ultrasonic power technique is consider a mandatory technique which is always entered in many processes such as in metal and plastic welding to overcomes many issues,with aided of applying force(pressure)and supplied high frequency vibration,a solid-state weld can be generated by ultrasonic metal welding technique.That gives a technique the ability to join not only a small component,whereas also to join thicker specimens,which depends on a proper control of matching welding conditions.Therefore a welding performance can be studied and compared after designed welding horn to resonance at frequencies of 20 kHz and 40 kHz.The analyses of the designed horn are completed through use a vibration mathematical expressions,modal and harmonic analyses to ensure the weldability due to applying ultrasonic power to the working area and also to compare the performance of joint at using two resonance frequencies of 20 kHz and 40 kHz.The dimensions of the horns were determined to match the selected resonance frequencies,which the lengths were calculated as 132 mm and 66 mm respectively.The analysis of the exciting model indicates that the axial vibration modes of 19,584 Hz and 39,794 Hz are obtained in 10th mode,while the two frequency values are recorded 19,600 Hz and 39,800 Hz from the frequency response of the two horns.The weld strength between Al and Cu specimens with a thickness 0.5 mm was evaluated using a tensile test,which the analyses were obtained under using different welding pressure and varied amplitudes.The results were recorded within exciting a horn with two different resonance frequencies,show the enhancement of weld strength and quality through control of stepping amplitude,the enhancement means obtain good strength of the weld,reduce sticking horn to specimen,and lower specimen marking.
基金The authors would like to thank the National Natural Science Foundation of China(Grant No.51971183)Natural Sciences and Engineering Research Council of Canada(NSERC)+1 种基金Fundamental Research Funds for the Central Universities(XDJK2018B108,SWU119065)Venture and Innovation Support Program for Chongqing Overseas Returnees(CX2018082)in the form of international research collaboration.
文摘Lightweight ZEK100-0 Mg alloy and A16022-T43 Al alloy with an Ag interlayer were joined via ultrasonic spot welding(USW),focusing on the microstructural change and tensile lap shear strength of the welded joints in relation to welding energy.Mg/Al interface was superseded by Mg/Ag and Al/Ag interfaces,and unfavorable Mg门A-intermetallic compound was eliminated.Ag foil was observed to be intact in the nugget center,while it was broken or dissolved at the nugget edge at high welding energy levels.The diffusion layer at the Mg/Ag interface consisted of two distinctive sub-layers:Mg3Ag intermetallic compound adjoining Ag foil,and Mg3Ag-l-Mg eutectic structure adjacent to Mg.Only a thin diffusion layer consisting mainly of Ag3Al occurred al lhe Al/Ag interface.The tensile lap shear strength first increased,reached its peak value,and then decreased with increasing welding energy.The shear strength achieved in the present study was〜31%higher than that of the joint without interlayer.Interfacial failure occurred at all energy levels,with Ag foil particles or fragments being stuck on both Mg and Al sides due to its intense interaction with Mg and Al via accelerated diffusion during USW.The results obtained pave the way for the challenging dissimilar welding between Mg and Al alloys.
文摘The influence of ultrasonic vibrations on microstructure and mechanical properties of the AZ91-C magnesium alloy after ultrasonic assisted friction stir welding(UaFSW)in comparison with conventional friction stir welding(FSW)was investigated.The FSW was applied at the rotational speed of 1400 r/min and welding speed of 40 mm/min and no defects were observed.Using the same welding parameters,the process was carried out with inducing ultrasonic vibrations to the weld line at the amplitude of 15μm.The microstructure of the specimens was observed with optical and scanning electron microscopy.The results indicate that a very fine microstructure is obtained in UaFSW with respect to that of conventional FSW.Moreover,β-Mg17Al12 coarse dendrites are segregated to very fine and partly spherical particles that homogeneously distribute inα-Mg matrix.This remarkably-modified morphology of microstructure attributed to severe plastic deformation comes from ultrasonic vibration and friction stirring effect.Tensile and hardness tests were performed to evaluate the mechanical properties of the welds.According to the results,the vibration greatly improves the mechanical properties of the conventional FSW joint.The tensile strength and hardness are increased from 195 MPa and HV 79 in conventional FSW to 225 MPa and HV 87 in UaFSW,respectively.
基金supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and AUTO21 Network of Centers of Excellence for providing financial supportthe financial support by the Premier’s Research Excellence Award (PREA), NSERC-Discovery Accelerator Supplement (DAS) Award, Automotive Partnership Canada (APC), Canada Foundation for Innovation (CFI), and Ryerson Research Chair (RRC) program
文摘Sound dissimilar lap joints were achieved via ultrasonic spot welding (USW), which is a solid-state joining technique. The addition of Sn interlayer during USW effectively blocked the formation of brittle Al12Mg17 intermetallic compound in the Mg-Al dissimilar joints without interlayer, and led to the presence of a distinctive composite-like Sn and Mg2Sn eutectic structure in both Mg- Al and Mg-high strength low alloy (HSLA) steel joints. The lap shear strength of both types of dissimilar joints with a Sn interlayer was significantly higher than that of the corresponding dissimilar joints without interlayer. Failure during the tensile lap shear tests occurred mainly in the mode of cohesive failure in the Mg- Al dissimilar joints and in the mode of partial cohesive failure and partial nugget pull-out in the Mg-HSLA steel dissimilar joints.
文摘Ultrasonic assisted friction stir welding (UAFSW) is a recent modification of conventional friction stir welding, which adds ultrasonic energy directly into the friction stir welding area by the pin. In this study, 2A12 aluminum alloy was welded by this process and conventional, respectively. The tensile tests, microstructure and fracture surface of FSW joint and UAFSW joint were analyzed. The research results show that the surface forming texture of ultrasonic assisted friction stir welding joint, compared with conventional, is finer and more uniform, showing metallic matte color. The grains are much finer in weld nugget zone, thermo-mechanically affected zone and heat-affected zone; S-phase particles size is much smaller and distribution is more homogeneous in the matrix. The tensile strength of UAFSW joint is 94. 13% of base metal, and the elongation is 11.77%. The tensile strength of FSW joint is 83.15% of base metal, and the elongation is 8.81%. The tests results reveal that ultrasonic vibration can improve the tensile strength and the elongation of welded joints.
基金We are grateful for the financial support provided by the National Natural Science Foundation of China(Nos.51974100 and 51605117).
文摘The present study focuses on interface microstructure and joint formation.AA6061 aluminum alloy(Al)and commercial pure titanium(Ti)joints were welded by ultrasonic spot welding(USW).The welding energy was 1100-3200 J.The Al-Ti joint appearance and interface microstructure were observed mainly via optical microscopy and field emission scanning electron microscopy.Results indicated that a good joint can be achieved only with proper welding energy of 2150 J.No significant intermetallic compound(IMC)was found under all conditions.The high energy barriers of Al-Ti and difficulties in diffusion were the main reasons for the absence of IMC according to kinetic analysis.The heat input is crucial for the material plastic flow and bonding area,which plays an important role in the joint formation.
文摘The ultrasonic welding process for wires is being largely used on industry mainly on applications that involve the connectionbetween similar or different metals. The biggest benefit of this technology is the possibility to perform the weld without additionmaterials, like terminals, metal rings or tapes. Manufacturing of wiring harnesses demands a significant amount of joining, such aswelding, crimping or soldering, to fulfill the desired layout of the harnesses and capacity requirements, but conventional connectionprocesses, face difficulties in joining multiple cross sections mainly due to the characteristics of the processes and equipment in use.Ultrasonic metal welding process overcomes these issues due to the solid-state characteristics inherent to the process itself that includethe excellent electrical properties of the joint. Several researches on ultrasonic metal welding are being done to define the fundamentalmechanisms behind this process and it is being seen that they are completely dependent on the cross section to be welded. With thisresearch we are trying to develop methods for process characterization and define acceptable quality parameters in this process. Themain topics addressed in this paper are the characterization the weld formation using copper-to-copper wires using optical microscopyand the analysis of insulation material when submitted to different thermal conditions.
基金the National Natural Science Foundation of China(No.51665037)。
文摘The numerical simulation of arc was carried out for both conventional melt inert gas(MIG)welding and ultrasonic assisted melt inert gas(U-MIG)welding.Based on the model established by Fluent,the arc shape,temperature field,and potential distribution were simulated.The study found that the shape of the arc changed when ultrasonic was added radially;the high-temperature area of the arc stretched,and the temperature peak increased.But as the current increased,the increase in temperature decreased.In addition,under the same conditions,the potential of U-MIG decreased and the pressure on the workpiece increased.To verify the accuracy of the simulation results,welding experiments under identical conditions were carried out,and a high-speed camera was used to collect dynamic pictures of the arc.The simulation results were in a favorable agreement with the experimental results,which provided a certain reference value for ultrasonic assisted arc welding.
文摘The paper explains the comparison of magnetic pulse welding method which belongs to non-conventional machining methods with other conventional and non-conventional welding methods which include brazing, explosive welding, ultrasonic welding, tungsten and metal inert gas and roll bonding. Magnetic pulse welding differs completely in technology when compared with conventional welding processes because the process is done with high velocity and without heat or consumable materials. It is better than other methods because it's cold process and can be done without any heat affect zone. In addition, there is no need for rework and post welding cleaning and there is no scrap problem. Magnetic pulse welding is a green process used to design and build light structure with high strength to reduce the weight and the energy. Magnetic pulse welding reduces the risk of corrosion by limiting the metallic interaction to just the two metals welded; therefore, it replaces the brazing method. Also, it is better than the explosive welding method because there is no risk of handling the explosive material and there is no noise. The part assembly by magnetic pulse welding is stronger than the parts assembly by tungsten and metal inert gas welding and it is easy to achieve a good aesthetic with high speed. Therefore, using magnetic pulse welding technology will not affect the environment.
文摘The joining of metal and polymer is an increasingly important method to get lightweight components in the development of manufacturing industry- nowadays. In this artiele, metal and polymer lap joint was achieved by means of resistance spot welding (RSW) and ultrasonic assistance welding (UAW). The joining mechanism of lap joint was analyzed by OM, TEM on microstructure at the interface of lap joints and XPS and IR spectra was discussed based on the following different ones: mechanical-interlocking, diffusion bond and coordination bond. The results showed that it was the combined action that played an important role in the effective joining work. Besides, ultrasonic assistance was used in the study to aid welding process based on its high-frequency ultrasonic vibration, which made joints shaping better and improved tensile strength visibly contrast to joints with the same lower heat input parameters.
基金supported by the National Key R&D Program of China(2018YFB1107900)the National Natural Science Foundation of China and Civil Aviation Administration of China(U1933129)+1 种基金the Natural Science Foundation of Tianjin City(18JCQNJC04100)the National Natural Science Foundation of China(51575383).
文摘The effect of Zn interlayer on the microstructural evolution and mechanical behavior of dissimilar ultrasonic-spot-welded Al/Cu joints was investigated.The tensile lap shear strength in relation to welding energy was analyzed.The experimental results show that two intermetallic compounds,Cu5Zn8 and Al2Cu,were generated at the interface of the ultrasonic-spotwelded Al/Cu joint with a Zn interlayer.The primary joining mechanisms of the joint included the intermetallic compound bonding and metallic bonding caused by solid shear plastic deformation.Meanwhile,with increasing welding energy,the plastic deformation of the material became more substantial.With increasing welding energy,the tensile lap shear strength of the joints first increased and then decreased for the ultrasonic-spot-welded Al/Cu joints with and without Zn interlayers.Under the energy input of 700 J,the bearing load capacity of the ultrasonic-spot-welded Al/Cu joints with a Zn interlayer improved signifi cantly due to the observed intermetallic compound(Cu5Zn8).
基金supported by the National Nat-ural Science Foundation of China(No.52175310)A part of the work was also supported by the National Science and Technology Major Project(No.2017-VI-0009-0080)+1 种基金the Guang-dong Province Key Research and Development Program(No.2019B010935001)and the Shenzhen Science and Technology Plan(No.GXWD20201230155427003-20200821172456002).
文摘The coupling effects of ultrasonic excitation and high-strain-rate deformation are the core factors for weld formation during ultrasonic welding.However,interfacial deformation behavior still shrouds in uncer-tainty because of the contradictory features between mutual dislocation retardation caused by severely frictional deformation and ultrasonic-accelerated dislocation motion.[101]and[111]-oriented Cu single crystals which tended to form geometrically necessary boundaries(GNBs)were selected as the welding substrates to trace the uniquely acoustoplastic effects in the interfacial region under the ultrasonically excited high-strain-rate deformation.It was indicated that for a low energy input,micro-welds localized at the specific interface region,and equiaxed dislocation cells substituting for GNBs dominated in the ini-tial single crystal rotation region.As the welding energy increased,continuous shear deformation drove the dynamic recrystallization region covered by equiaxed grains to spread progressively.Limited discrete dislocations inside the recrystallized grains and nascent dislocation cells at the grain boundaries were ob-served in[101]and[111]joints simultaneously,suggesting that the ultrasonic excitation promoted motion of intragranular dislocation and pile-up along the sub-grain boundaries.The interfacial morphology be-fore and after expansion of recrystallization region all exhibited the weakening of orientation constraint on dislocation motion,which was also confirmed by the similar micro-hardness in joint interface.The first-principle calculation and applied strain-rate analysis further revealed that ultrasonic excitation en-hanced dislocation slipping,and enabled dislocation motion to accommodate severe plastic deformation at a high-strain-rate.