Traditional ultrasonic TOFD ( time of flight diffraction) has the major shortcoming of low amplitude of diffractive wave which brings about lack of sensitivity for weld defect detection. Aimed at the technological l...Traditional ultrasonic TOFD ( time of flight diffraction) has the major shortcoming of low amplitude of diffractive wave which brings about lack of sensitivity for weld defect detection. Aimed at the technological limitation, a novel TOFD method is proposed by developing a focusing probe. Through the analyses and calculation of sound field distribution based on geometric acoustics, a cylindrical surface wedge is designed and produced. Artificial defect containing testing piece is made and tested using both traditional and focusing TOFD, and the received signal and image are compared. The result shows that the proposed focusing method can converge the emitted sound energy effectively and improve testing sensitivity greatly. Compared with traditional TOFD tested data, focusing TOFD tested defect wave in A-scan line and defect diffractive stripe in D-scan image can be identified easily.展开更多
The effect of diffraction on the ultrasonic velocity measured by the pulse interference method has been investigated in VHF range theoretically and experimentally. Two silicate glasses are taken as the specimens, thei...The effect of diffraction on the ultrasonic velocity measured by the pulse interference method has been investigated in VHF range theoretically and experimentally. Two silicate glasses are taken as the specimens, their frequency dependences of longitudinal velocities are measured in the frequency range of 50-350 MHz, and the phase advances of ultrasonic signals caused by diffraction effect are calculated using A. O. Williams' theoretical expression. For the velocity error due to diffraction effect, the experimental results are in good agreement with the theoretical prediction. It has been shown that the velocity error due to diffraction effect is directly proportional to dθ21 (f)/df, whereθ21 (f) is the phase advances difference between the two partial reflection signals used in velocity measurement and f is the ultrasonic frequency.展开更多
The accurate measurement method of ultrasonic velocity by the pulse interference method with eliminating the diffraction effect has been investigated in VHF range experimentally. Two silicate glasses were taken as the...The accurate measurement method of ultrasonic velocity by the pulse interference method with eliminating the diffraction effect has been investigated in VHF range experimentally. Two silicate glasses were taken as the specimens, their frequency dependences of longitudinal velocities were measured in the frequency range 50-350 MHz, and the phase advances of ultrasonic signals caused by diffraction effect were calculated using A. O. Williams' theoretical expression. For the frequency dependences of longitudinal velocities, the measurement results were in good agreement with the simulation ones in which the phase advances were included. It has been shown that the velocity error due to diffraction effect can be corrected very well by this method.展开更多
基金Supported by the International Cooperation Project (2007DFR70070), the National Natural Science Foundation of China (51005056, 50775054) and the Research Fund for the Doctoral Program of Higher Education (20102302120045 ).
文摘Traditional ultrasonic TOFD ( time of flight diffraction) has the major shortcoming of low amplitude of diffractive wave which brings about lack of sensitivity for weld defect detection. Aimed at the technological limitation, a novel TOFD method is proposed by developing a focusing probe. Through the analyses and calculation of sound field distribution based on geometric acoustics, a cylindrical surface wedge is designed and produced. Artificial defect containing testing piece is made and tested using both traditional and focusing TOFD, and the received signal and image are compared. The result shows that the proposed focusing method can converge the emitted sound energy effectively and improve testing sensitivity greatly. Compared with traditional TOFD tested data, focusing TOFD tested defect wave in A-scan line and defect diffractive stripe in D-scan image can be identified easily.
文摘The effect of diffraction on the ultrasonic velocity measured by the pulse interference method has been investigated in VHF range theoretically and experimentally. Two silicate glasses are taken as the specimens, their frequency dependences of longitudinal velocities are measured in the frequency range of 50-350 MHz, and the phase advances of ultrasonic signals caused by diffraction effect are calculated using A. O. Williams' theoretical expression. For the velocity error due to diffraction effect, the experimental results are in good agreement with the theoretical prediction. It has been shown that the velocity error due to diffraction effect is directly proportional to dθ21 (f)/df, whereθ21 (f) is the phase advances difference between the two partial reflection signals used in velocity measurement and f is the ultrasonic frequency.
文摘The accurate measurement method of ultrasonic velocity by the pulse interference method with eliminating the diffraction effect has been investigated in VHF range experimentally. Two silicate glasses were taken as the specimens, their frequency dependences of longitudinal velocities were measured in the frequency range 50-350 MHz, and the phase advances of ultrasonic signals caused by diffraction effect were calculated using A. O. Williams' theoretical expression. For the frequency dependences of longitudinal velocities, the measurement results were in good agreement with the simulation ones in which the phase advances were included. It has been shown that the velocity error due to diffraction effect can be corrected very well by this method.