The effect of current on the morphology of Al alloy T-joint in double-pulsed metal inert gas(DP-MIG) welding process was investigated by simulation and experiment.A three-dimensional finite element model and the DP-...The effect of current on the morphology of Al alloy T-joint in double-pulsed metal inert gas(DP-MIG) welding process was investigated by simulation and experiment.A three-dimensional finite element model and the DP-MIG heat source of double-ellipsoidal volumetric model were developed to simulate the temperature and stress fields under different welding conditions.The macro-morphology and microstructure of welding joints at the corresponding currents were observed in the experiment.The results show that the best condition is at an average current of 90 A and current difference of 40 A,when the maximum temperature is 200 °C higher than the fusion points,with the temperature difference of about 100 °C and stress change of 10 MPa between thermal pulse and thermal base.Under these conditions,Al alloy T-joint with proper fusion condition has smooth fish-scale welding appearance and finer microstructure.Furthermore,the thermal curves and stress distribution in the experiment are consistent with those in the simulation,verifying the precision of the welding simulation.展开更多
Based on the proper assumptions and approximations, the coupling mechanism of the electromagnetic acoustic transducer (EMAT) for ultrasonic generation within ferromagnetic material was studied by analyzing the eddy cu...Based on the proper assumptions and approximations, the coupling mechanism of the electromagnetic acoustic transducer (EMAT) for ultrasonic generation within ferromagnetic material was studied by analyzing the eddy current distribution, Lorentz force, magnetostriction force and magnetization force. Some useful numerical calculations are presented to explain the EMAT behavior with general geometric arrangements. It is indicated that for the ferromagnetic material the magnetostriction effect dominates the EMAT phenomenon for ultrasonic wave generation in low magnetic field intensity, while the material does not reach its magnetizing saturation. But, with the increase of the bias magnetic field and saturation, the magnetostrictive terms will make no contributions to the ultrasonic generation and the Lorentz force becomes the only exciting mechanism. It is important to determine both the Lorentz and magnetostriction forces and select the appropriate working manner for achieving an optimized design.展开更多
By applying ultrasonic-MIG welding as research object, the behaviors of welding arc were analyzed with varied ultrasonic parameters in welding using arc images recorded by high-speed camera. The influences of the curr...By applying ultrasonic-MIG welding as research object, the behaviors of welding arc were analyzed with varied ultrasonic parameters in welding using arc images recorded by high-speed camera. The influences of the current by exciting ultrasonic and the height and shape of ultrasonic radiator on welding arc were studied. Results showed that when the current was 150 mA, ultrasonic showed most distinct compressive effect on arc. The compressive volumes of arc length at different heights were calculated by adjusting the height of ultrasonic radiator continuously from 10 mm to 35 mm, there were three maximum points. The compressive degrees of them reduced successively. By utilizing different shapes of ultrasonic radiator, it revealed that ultrasonic radiator with spherical crown surface showed better compressive effect in a larger welding standard scope. When radius of radiator increased, axial compressive volume of arc enlarged, while an increasing curvature radius led to mare distinct radial compression of arc.展开更多
Describes the structure of a current feedback ultrasonic generation system with such characteristic as velocity stabilization and automatic frequency tracking, discusses the velocity stabilization principle, and point...Describes the structure of a current feedback ultrasonic generation system with such characteristic as velocity stabilization and automatic frequency tracking, discusses the velocity stabilization principle, and points out that successful frequency tracking is precondition for velocity stabilization.展开更多
The given work studies the reason of the change of a superfluous current near crystallization temperature of an amorphous αPbSb metal alloy and at the same time founds out the influence of ultrasonic processing (USP)...The given work studies the reason of the change of a superfluous current near crystallization temperature of an amorphous αPbSb metal alloy and at the same time founds out the influence of ultrasonic processing (USP) on the properties of αPbSb-nSi solar elements (SE), made by Shottki diodes technology (ShD) with a metal alloy. It is found that occurrence of a superfluous current αPbSb-nSi ShD under the influence of thermoannealing is connected with changes of structure of an amorphous film of metal at transition in a polycrystalline condition. VAC damaged αPbSb-nSi Sh Dare very sensitive to annealing time. Eventually, even at room temperature, level of a superfluous current decreases, i.e. “the wound” put by mechanical damage sort of heals, restoration process occurs the faster, the higher the annealing temperature is. Function of γt annealing parameters changes in an interval and the influence USP on photo-electric properties αPbSb-nSi SE depends on the chosen UIT mode.展开更多
针对高氮钢增材制造熔滴过渡过程中氮元素逸出及飞溅问题,进行超音频脉冲熔化极气体保护(Ultrasonic Frequency Pulsed Gas Metal Arc,UFP-GMA)增材制造熔滴过渡试验,研究不同超音频脉冲电流叠加模式和脉冲电流频率对高氮钢熔滴过渡稳...针对高氮钢增材制造熔滴过渡过程中氮元素逸出及飞溅问题,进行超音频脉冲熔化极气体保护(Ultrasonic Frequency Pulsed Gas Metal Arc,UFP-GMA)增材制造熔滴过渡试验,研究不同超音频脉冲电流叠加模式和脉冲电流频率对高氮钢熔滴过渡稳定性的影响,获取能够实现高氮钢增材稳定熔滴过渡的工艺参数。试验结果表明:在脉冲熔化极气体保护(Pulsed Gas Metal Arc,P-GMA)增材工艺条件下可以实现一脉一滴过渡,但是过渡稳定性较差,飞溅明显;在P-GMA基值阶段或基值和峰值阶段都叠加超音频脉冲电流均不利于熔滴过渡,容易出现短路、熔滴爆炸等问题;在P-GMA峰值阶段叠加低频(20 kHz)脉冲电流时,对熔滴过渡影响较弱,叠加中频(40~60 kHz)脉冲电流能抑制高氮钢熔滴过渡中大颗粒飞溅生成,提高熔滴过渡稳定性,但是当频率超过60 kHz时在过渡中会形成许多小飞溅。展开更多
In recent research, a novel method combined with pulse current (PC) deposition and the ultrasonic (U) field was used to fabricate pure nickel and nickel-ceria composite coatings, respectively. Morphology, crack pr...In recent research, a novel method combined with pulse current (PC) deposition and the ultrasonic (U) field was used to fabricate pure nickel and nickel-ceria composite coatings, respectively. Morphology, crack propagation, and crystal texture were observed and analysed by using environment scanning electron microscopy (E-SEM) and transmission electron microscopy (TEM). Orthogonal experiment [L16 (45)] was designed to optimize the parameters of pulsed power and the appropriate amount of RE addition based on microhardness. Effect of RE addition and pulsed current on the mechanism of co-electrodeposition was also investigated and compared. Experimental results indicated that it produced the alloying coatings, exhibiting compact grain and amorphous state. Nano-sized RE would preferentially occupy and pad at the edge of cracked gaps and micropore to limit the growing location and space for coarse Ni grain. Furthermore, during annealing at 480 ℃ for 2 h, a solid-solution precipitated phase named NiCexO1-x (0展开更多
无励磁分接开关出现放电性故障会严重危害变压器安全运行。介绍了一起500 k V变压器交接试验过程中脉冲局部放电试验异常的案例,应用脉冲电流法、特高频法、超声波法等多维局部放电检测技术进行时差定位,成功诊断了变压器无励磁分接开...无励磁分接开关出现放电性故障会严重危害变压器安全运行。介绍了一起500 k V变压器交接试验过程中脉冲局部放电试验异常的案例,应用脉冲电流法、特高频法、超声波法等多维局部放电检测技术进行时差定位,成功诊断了变压器无励磁分接开关内部异物放电故障;通过材质成分分析判断异物为动触头旋转轴压环的机加工碎屑,异物位于无励磁分接开关动触头旋转轴位置,随挡位切换而移动,导致各个挡位均可检测到局部放电,且脉冲局部放电量随挡位变化而变化。展开更多
基金Project(51475156)supported by the National Natural Science Foundation of China
文摘The effect of current on the morphology of Al alloy T-joint in double-pulsed metal inert gas(DP-MIG) welding process was investigated by simulation and experiment.A three-dimensional finite element model and the DP-MIG heat source of double-ellipsoidal volumetric model were developed to simulate the temperature and stress fields under different welding conditions.The macro-morphology and microstructure of welding joints at the corresponding currents were observed in the experiment.The results show that the best condition is at an average current of 90 A and current difference of 40 A,when the maximum temperature is 200 °C higher than the fusion points,with the temperature difference of about 100 °C and stress change of 10 MPa between thermal pulse and thermal base.Under these conditions,Al alloy T-joint with proper fusion condition has smooth fish-scale welding appearance and finer microstructure.Furthermore,the thermal curves and stress distribution in the experiment are consistent with those in the simulation,verifying the precision of the welding simulation.
文摘Based on the proper assumptions and approximations, the coupling mechanism of the electromagnetic acoustic transducer (EMAT) for ultrasonic generation within ferromagnetic material was studied by analyzing the eddy current distribution, Lorentz force, magnetostriction force and magnetization force. Some useful numerical calculations are presented to explain the EMAT behavior with general geometric arrangements. It is indicated that for the ferromagnetic material the magnetostriction effect dominates the EMAT phenomenon for ultrasonic wave generation in low magnetic field intensity, while the material does not reach its magnetizing saturation. But, with the increase of the bias magnetic field and saturation, the magnetostrictive terms will make no contributions to the ultrasonic generation and the Lorentz force becomes the only exciting mechanism. It is important to determine both the Lorentz and magnetostriction forces and select the appropriate working manner for achieving an optimized design.
基金This study was supported by National Natural Science Foundation of China (Grant No. 51275134) and the Key Program of the National Natural Science Foundation of China (Grant No. 51435004).
文摘By applying ultrasonic-MIG welding as research object, the behaviors of welding arc were analyzed with varied ultrasonic parameters in welding using arc images recorded by high-speed camera. The influences of the current by exciting ultrasonic and the height and shape of ultrasonic radiator on welding arc were studied. Results showed that when the current was 150 mA, ultrasonic showed most distinct compressive effect on arc. The compressive volumes of arc length at different heights were calculated by adjusting the height of ultrasonic radiator continuously from 10 mm to 35 mm, there were three maximum points. The compressive degrees of them reduced successively. By utilizing different shapes of ultrasonic radiator, it revealed that ultrasonic radiator with spherical crown surface showed better compressive effect in a larger welding standard scope. When radius of radiator increased, axial compressive volume of arc enlarged, while an increasing curvature radius led to mare distinct radial compression of arc.
文摘Describes the structure of a current feedback ultrasonic generation system with such characteristic as velocity stabilization and automatic frequency tracking, discusses the velocity stabilization principle, and points out that successful frequency tracking is precondition for velocity stabilization.
文摘The given work studies the reason of the change of a superfluous current near crystallization temperature of an amorphous αPbSb metal alloy and at the same time founds out the influence of ultrasonic processing (USP) on the properties of αPbSb-nSi solar elements (SE), made by Shottki diodes technology (ShD) with a metal alloy. It is found that occurrence of a superfluous current αPbSb-nSi ShD under the influence of thermoannealing is connected with changes of structure of an amorphous film of metal at transition in a polycrystalline condition. VAC damaged αPbSb-nSi Sh Dare very sensitive to annealing time. Eventually, even at room temperature, level of a superfluous current decreases, i.e. “the wound” put by mechanical damage sort of heals, restoration process occurs the faster, the higher the annealing temperature is. Function of γt annealing parameters changes in an interval and the influence USP on photo-electric properties αPbSb-nSi SE depends on the chosen UIT mode.
文摘针对高氮钢增材制造熔滴过渡过程中氮元素逸出及飞溅问题,进行超音频脉冲熔化极气体保护(Ultrasonic Frequency Pulsed Gas Metal Arc,UFP-GMA)增材制造熔滴过渡试验,研究不同超音频脉冲电流叠加模式和脉冲电流频率对高氮钢熔滴过渡稳定性的影响,获取能够实现高氮钢增材稳定熔滴过渡的工艺参数。试验结果表明:在脉冲熔化极气体保护(Pulsed Gas Metal Arc,P-GMA)增材工艺条件下可以实现一脉一滴过渡,但是过渡稳定性较差,飞溅明显;在P-GMA基值阶段或基值和峰值阶段都叠加超音频脉冲电流均不利于熔滴过渡,容易出现短路、熔滴爆炸等问题;在P-GMA峰值阶段叠加低频(20 kHz)脉冲电流时,对熔滴过渡影响较弱,叠加中频(40~60 kHz)脉冲电流能抑制高氮钢熔滴过渡中大颗粒飞溅生成,提高熔滴过渡稳定性,但是当频率超过60 kHz时在过渡中会形成许多小飞溅。
基金Project supported by National Natural Science Foundation of China (50775113)Natural Science Foundation of Jiangsu Province (BK2007201)
文摘In recent research, a novel method combined with pulse current (PC) deposition and the ultrasonic (U) field was used to fabricate pure nickel and nickel-ceria composite coatings, respectively. Morphology, crack propagation, and crystal texture were observed and analysed by using environment scanning electron microscopy (E-SEM) and transmission electron microscopy (TEM). Orthogonal experiment [L16 (45)] was designed to optimize the parameters of pulsed power and the appropriate amount of RE addition based on microhardness. Effect of RE addition and pulsed current on the mechanism of co-electrodeposition was also investigated and compared. Experimental results indicated that it produced the alloying coatings, exhibiting compact grain and amorphous state. Nano-sized RE would preferentially occupy and pad at the edge of cracked gaps and micropore to limit the growing location and space for coarse Ni grain. Furthermore, during annealing at 480 ℃ for 2 h, a solid-solution precipitated phase named NiCexO1-x (0
文摘无励磁分接开关出现放电性故障会严重危害变压器安全运行。介绍了一起500 k V变压器交接试验过程中脉冲局部放电试验异常的案例,应用脉冲电流法、特高频法、超声波法等多维局部放电检测技术进行时差定位,成功诊断了变压器无励磁分接开关内部异物放电故障;通过材质成分分析判断异物为动触头旋转轴压环的机加工碎屑,异物位于无励磁分接开关动触头旋转轴位置,随挡位切换而移动,导致各个挡位均可检测到局部放电,且脉冲局部放电量随挡位变化而变化。