期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Energy field-assisted high-speed dry milling green machining technology for difficult-to-machine metal materials 被引量:1
1
作者 Jin ZHANG Xuefeng HUANG +3 位作者 Xinzhen KANG Hao YI Qianyue WANG Huajun CAO 《Frontiers of Mechanical Engineering》 SCIE CSCD 2023年第2期33-97,共65页
Energy field-assisted machining technology has the potential to overcome the limitations of machining difficult-to-machine metal materials,such as poor machinability,low cutting efficiency,and high energy consumption.... Energy field-assisted machining technology has the potential to overcome the limitations of machining difficult-to-machine metal materials,such as poor machinability,low cutting efficiency,and high energy consumption.High-speed dry milling has emerged as a typical green processing technology due to its high processing efficiency and avoidance of cutting fluids.However,the lack of necessary cooling and lubrication in high-speed dry milling makes it difficult to meet the continuous milling requirements for difficult-to-machine metal materials.The introduction of advanced energy-field-assisted green processing technology can improve the machinability of such metallic materials and achieve efficient precision manufacturing,making it a focus of academic and industrial research.In this review,the characteristics and limitations of high-speed dry milling of difficult-to-machine metal materials,including titanium alloys,nickel-based alloys,and high-strength steel,are systematically explored.The laser energy field,ultrasonic energy field,and cryogenic minimum quantity lubrication energy fields are introduced.By analyzing the effects of changing the energy field and cutting parameters on tool wear,chip morphology,cutting force,temperature,and surface quality of the workpiece during milling,the superiority of energy-field-assisted milling of difficult-to-machine metal materials is demonstrated.Finally,the shortcomings and technical challenges of energy-field-assisted milling are summarized in detail,providing feasible ideas for realizing multi-energy field collaborative green machining of difficult-to-machine metal materials in the future. 展开更多
关键词 difficult-to-machine metal material green machining high-speed dry milling laser energy fieldassisted milling ultrasonic energy field-assisted milling cryogenic minimum quantity lubrication energy field-assisted milling
原文传递
Safety and Performance of Harmonic®HD 1000i Shears in Thoracoscopic Procedures: A Retrospective Study
2
作者 Seong Yong Park Subin Lim +3 位作者 Dong Kyu Kim Jason R. Waggoner Paula P. Veldhuis Giovanni A. Tommaselli 《Open Journal of Thoracic Surgery》 2022年第2期33-42,共10页
Background: Ultrasonic energy devices are utilized for transection, incision, and hemostasis in traditional open and laparoscopic procedures. The Harmonic HD 1000i Shears, designed to deliver a precise amount of therm... Background: Ultrasonic energy devices are utilized for transection, incision, and hemostasis in traditional open and laparoscopic procedures. The Harmonic HD 1000i Shears, designed to deliver a precise amount of thermal energy during tissue transection and vessel sealing, has been utilized in many specialties. This study aimed to confirm real-world safety and performance of the Harmonic device in two thoracoscopic procedures: lobectomy and segmentectomy. Methods: The primary endpoint of this retrospective, observational, single-arm study was rate of post-operative blood transfusions related to study device or procedure. Secondary endpoints included occurrence of intra- and post-operative adverse events (AEs) or complications device- or procedure-related, and rate of required additional hemostatic measures. Adults included those who underwent thoracoscopic lobectomy or segmentectomy where HD 1000i shears were used while excluding those where additional advanced energy devices were used. The study was conducted at Severance Hospital, Yonsei University Health System, South Korea from May 1, 2018, to November 30, 2020. Results: Subjects included n = 766 lobectomies (mean age 63.79, 52% male) and n = 215 segmentectomies (mean age 63.19, 54% male). Estimated blood loss was 50 mL (0 min, 3200 max) and 20 mL (0 min, 800 max), intraoperative transfusion rate 0.001% and 0%, intraoperative complication/AE rate 1% and 2%, and post-operative complication/AE rate 9% and 4% in the lobectomy and segmentectomy groups, respectively. Median operative times were 108 min. (35 min, 395 max) for lobectomies and 105 min. (32 min, 574 max) for segmentectomies. Conclusion: Given the low rate of blood loss and intra- and post-operative complication/AE rates, HD 1000i can be used confidently for thoracoscopic pulmonary resection in adults. 展开更多
关键词 Harmonic HD 1000i Shears LOBECTOMY SEGMENTECTOMY ultrasonic energy Device
下载PDF
The effects of ultrasound frequency and power on the activation energy in Si-KOH reaction system
3
作者 Qing-Bin Jiao Bayanheshig +2 位作者 Xin Tan Ji-Wei Zhu Jian-Xiang Gao 《Chinese Chemical Letters》 SCIE CAS CSCD 2014年第4期617-620,共4页
The activation energy is the minimum amount of energy required to initiate a reaction. It is one of the important indexes for appraising a reaction. The chemical reaction rate is closely related to the value of activa... The activation energy is the minimum amount of energy required to initiate a reaction. It is one of the important indexes for appraising a reaction. The chemical reaction rate is closely related to the value of activation energy, and reducing activation energy is propitious to promoting a chemical reaction. In the present paper, the relationship between the activation energy in Si-KOH reaction system and the ultrasound frequency and power has been discussed for the first time. The range of ultrasound frequency and power is 40-100kHz (interval by 20kHz) and 10-50W (interval by 10W), respectively. The experimental clata indicate that the activation energy decreases with the increasing ultrasound power. Comparing with the activation energy without ultrasound irradiation, the results in our paper indicate that ultrasound irradiation could reduce the activation energy in Si-KOH reaction system and increase the reaction rate. 展开更多
关键词 Si-KOH Etching rate ultrasonic irradiation Activation energy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部