The procedures of ultrasonic extraction and clean-up were optimized for the determination of polycyclic aromatic hydrocarbons (PAHs) in marine sediments. Samples were ultrasonically extracted, and the extracts were pu...The procedures of ultrasonic extraction and clean-up were optimized for the determination of polycyclic aromatic hydrocarbons (PAHs) in marine sediments. Samples were ultrasonically extracted, and the extracts were purified with a miniaturized silica gel chromatographic column and analyzed with high performance liquid chromatography (HPLC) with a fluorescence detector. Ultrasonication with methanol-dichloromethane (2:1, v/v) mixture gave higher extraction efficiency than that with dichloromethane. Among the three elution solvents used in clean-up step, dichloromethane-hexane (2:3, v/v) mixture was the most satisfactory. Under the optimized conditions, the recoveries in the range of 54.82% to 94.70% with RSDs of 3.02% to 23.22% for a spiked blank, and in the range of 61.20% to 127.08% with RSDs of 7.61% to 26.93% for a spiked matrix, were obtained for the 15 PAHs studied, while the recoveries for a NIST standard reference SRM 1941b were in the range of 50.79% to 83.78% with RSDs of 5.24% to 21.38%. The detection limits were between 0.75 ng L-1 and 10.99 ng L-1for different PAHs. A sample from the Jiaozhou Bay area was examined to test the established methods.展开更多
A green, rapid and precise sample pretreatment technique, IL-based UAE(ionic liquid-based ultrasonic- assisted extraction), was coupled with high-performance liquid chromatographic separation to identify the main ef...A green, rapid and precise sample pretreatment technique, IL-based UAE(ionic liquid-based ultrasonic- assisted extraction), was coupled with high-performance liquid chromatographic separation to identify the main effective components in Schisandra sphenanthera(S, sphenanthera) and Schisandra chinensis(S, ehinensis) including schisantherin A, schisandrin A, and deoxyschizandrin. Four different types of ionic liquids have been investigated, finally [C6MIM][BF4] was used as the extraction solvent. A powder form of S. sphenanthera and S. chinensis was mixed with the [C6MIM][BF4] to produce a suspension. This suspension was ultrasonically extracted in a water bath at room temperature. Several of the process parameters were optimized, including the type of ionic liquid used and its volume, the sample amount, the size of the sample particle, the extraction time, etc. HPLC calibration curves were estab-lished for all the analytes and proved to be linear(r〉0.9999). The lowest detection level for schisandrin A was 0.12μg/mL, for schisantherin A was 0.08 μg/mL, and for deoxyschizandfin was 0.10μg/mL. The recoveries of the target compounds were from 74.19% to 109.33%. The standard deviations for detection were generally no more than 6.31%. In contrast to conventional extraction methods, the IL-based UAE did not involve volatile organic volatile solvents, and the analysis time, required sample and solvent vohtrnes were also lower than those of the conventional techniques.展开更多
基金supported by the National Natural Science Foundation of China (Grant No.20775074)
文摘The procedures of ultrasonic extraction and clean-up were optimized for the determination of polycyclic aromatic hydrocarbons (PAHs) in marine sediments. Samples were ultrasonically extracted, and the extracts were purified with a miniaturized silica gel chromatographic column and analyzed with high performance liquid chromatography (HPLC) with a fluorescence detector. Ultrasonication with methanol-dichloromethane (2:1, v/v) mixture gave higher extraction efficiency than that with dichloromethane. Among the three elution solvents used in clean-up step, dichloromethane-hexane (2:3, v/v) mixture was the most satisfactory. Under the optimized conditions, the recoveries in the range of 54.82% to 94.70% with RSDs of 3.02% to 23.22% for a spiked blank, and in the range of 61.20% to 127.08% with RSDs of 7.61% to 26.93% for a spiked matrix, were obtained for the 15 PAHs studied, while the recoveries for a NIST standard reference SRM 1941b were in the range of 50.79% to 83.78% with RSDs of 5.24% to 21.38%. The detection limits were between 0.75 ng L-1 and 10.99 ng L-1for different PAHs. A sample from the Jiaozhou Bay area was examined to test the established methods.
基金Supported by the National Natural Science Foundation of China(Nos. 81671220, 81502516) and the Jilin Provincial School Joint Construction Special Project, China(No.SXGJQY2017-13).
文摘A green, rapid and precise sample pretreatment technique, IL-based UAE(ionic liquid-based ultrasonic- assisted extraction), was coupled with high-performance liquid chromatographic separation to identify the main effective components in Schisandra sphenanthera(S, sphenanthera) and Schisandra chinensis(S, ehinensis) including schisantherin A, schisandrin A, and deoxyschizandrin. Four different types of ionic liquids have been investigated, finally [C6MIM][BF4] was used as the extraction solvent. A powder form of S. sphenanthera and S. chinensis was mixed with the [C6MIM][BF4] to produce a suspension. This suspension was ultrasonically extracted in a water bath at room temperature. Several of the process parameters were optimized, including the type of ionic liquid used and its volume, the sample amount, the size of the sample particle, the extraction time, etc. HPLC calibration curves were estab-lished for all the analytes and proved to be linear(r〉0.9999). The lowest detection level for schisandrin A was 0.12μg/mL, for schisantherin A was 0.08 μg/mL, and for deoxyschizandfin was 0.10μg/mL. The recoveries of the target compounds were from 74.19% to 109.33%. The standard deviations for detection were generally no more than 6.31%. In contrast to conventional extraction methods, the IL-based UAE did not involve volatile organic volatile solvents, and the analysis time, required sample and solvent vohtrnes were also lower than those of the conventional techniques.