Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe seve...Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe severely affects its pressure-holding capacity,hence the early detection of internal cracks is crucial for effective pipeline maintenance strategies.This study extends the scope of guided wave-based ultrasonic testing to detect the growth of internal cracks in a natural gas distribution PE pipe.Laboratory experiments and a finite element model were planned to study the wave-crack interaction at different stages of axially oriented internal crack growth with a piezoceramic transducer-based setup arranged in a pitch-catch configuration.Mode dispersion analysis supplemented with preliminary experiments was performed to isolate the optimal inspection frequency,leading to the selection of the T(0,1)mode at 50-kHz for the investigation.A transmission index based on the energy of the T(0,1)mode was developed to trace the extent of simulated crack growth.The findings revealed an inverse linear correlation between the transmission index and the crack depth for crack growth beyond 20%crack depth.展开更多
The multi-modes and disperse characteristics of torsional modes in pipes are investigated theoretically and experimentally. At all frequencies, both phase velocity and group velocity of the lowest torsional mode T(0,...The multi-modes and disperse characteristics of torsional modes in pipes are investigated theoretically and experimentally. At all frequencies, both phase velocity and group velocity of the lowest torsional mode T(0,1) are constant and equal to shear wave velocity. T(0,1) mode at all frequencies is the fastest torsional mode. In the experiments, T(0,1) mode is excited and received in pipes using 9 thickness shear vibration mode piezoelectric ceramic elements. Furthermore, an artificial longitudinal defect of a 4 m long pipe is detected using T(0,1) mode at 50 kHz. Experimental results show that it is feasible for longitudinal defect detection in pipes using T(0,1) mode of ultrasonic guided waves.展开更多
Propagation characteristics of high order longitudinal modes of ultrasonic guided waves in seven-wire steel strands are investigated theoretically and experimentally. According to these analysis results, proper longit...Propagation characteristics of high order longitudinal modes of ultrasonic guided waves in seven-wire steel strands are investigated theoretically and experimentally. According to these analysis results, proper longitudinal modes are selected for defect detection in steel strands. Dispersion curves for helical and central wires in a 17.80 mm nominal diameter seven-wire steel strand are numerically obtained firstly, and propagation characteristics of high-order longitudinal modes, such as wave structures, attenuation and dispersion, are analyzed. In experiments, the signals of ultrasonic guided wave at different high frequencies are excited and received at one end of a steel strand by using the same single piezoelectric transducer. The identification of longitudinal modes in the received signals is achieved based on short time Fourier transform. Furthermore, appropriate L(0, 5) mode at 2.54 MHz is chosen for detecting an artificial defect in a helical wire of the steel strand. Results show that high order longitudinal modes in a high frequency range with low dispersion and attenuation whose energy propagates mainly in the center of the wires can be used for defect detection in long range steel strands.展开更多
基金the financial support provided by USDOT Pipeline and Hazardous Materials Safety Administration (PHMSA)through the Competitive Academic Agreement Program (CAAP)。
文摘Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe severely affects its pressure-holding capacity,hence the early detection of internal cracks is crucial for effective pipeline maintenance strategies.This study extends the scope of guided wave-based ultrasonic testing to detect the growth of internal cracks in a natural gas distribution PE pipe.Laboratory experiments and a finite element model were planned to study the wave-crack interaction at different stages of axially oriented internal crack growth with a piezoceramic transducer-based setup arranged in a pitch-catch configuration.Mode dispersion analysis supplemented with preliminary experiments was performed to isolate the optimal inspection frequency,leading to the selection of the T(0,1)mode at 50-kHz for the investigation.A transmission index based on the energy of the T(0,1)mode was developed to trace the extent of simulated crack growth.The findings revealed an inverse linear correlation between the transmission index and the crack depth for crack growth beyond 20%crack depth.
基金This project is supported by National Natural Science Foundation of China(No. 10272007, No.60404017, No.10372009)Municipal Natural Science Foundation of Beijing, Clina(No.4052008).
文摘The multi-modes and disperse characteristics of torsional modes in pipes are investigated theoretically and experimentally. At all frequencies, both phase velocity and group velocity of the lowest torsional mode T(0,1) are constant and equal to shear wave velocity. T(0,1) mode at all frequencies is the fastest torsional mode. In the experiments, T(0,1) mode is excited and received in pipes using 9 thickness shear vibration mode piezoelectric ceramic elements. Furthermore, an artificial longitudinal defect of a 4 m long pipe is detected using T(0,1) mode at 50 kHz. Experimental results show that it is feasible for longitudinal defect detection in pipes using T(0,1) mode of ultrasonic guided waves.
基金supported by the National Natural Science Foundation of China(No.10602004)Beijing Natural Science Foundation(No.2072003)Beijing Talent Developing Project(No.20081B0501500173).
文摘Propagation characteristics of high order longitudinal modes of ultrasonic guided waves in seven-wire steel strands are investigated theoretically and experimentally. According to these analysis results, proper longitudinal modes are selected for defect detection in steel strands. Dispersion curves for helical and central wires in a 17.80 mm nominal diameter seven-wire steel strand are numerically obtained firstly, and propagation characteristics of high-order longitudinal modes, such as wave structures, attenuation and dispersion, are analyzed. In experiments, the signals of ultrasonic guided wave at different high frequencies are excited and received at one end of a steel strand by using the same single piezoelectric transducer. The identification of longitudinal modes in the received signals is achieved based on short time Fourier transform. Furthermore, appropriate L(0, 5) mode at 2.54 MHz is chosen for detecting an artificial defect in a helical wire of the steel strand. Results show that high order longitudinal modes in a high frequency range with low dispersion and attenuation whose energy propagates mainly in the center of the wires can be used for defect detection in long range steel strands.