期刊文献+
共找到243篇文章
< 1 2 13 >
每页显示 20 50 100
Nanoscale Zero-Valent Iron(nZVI)for Heavy Metal Wastewater Treatment:A Perspective
1
作者 Shaolin Li Lei Li Weixian Zhang 《Engineering》 SCIE EI CAS CSCD 2024年第5期16-20,共5页
Industries such as non-ferrous metal smelting discharge billions of gallons of highly toxic heavy metal wastewater(HMW)worldwide annually,posing a severe challenge to conventional wastewater treatment plants and harmi... Industries such as non-ferrous metal smelting discharge billions of gallons of highly toxic heavy metal wastewater(HMW)worldwide annually,posing a severe challenge to conventional wastewater treatment plants and harming the environment.HMW is traditionally treated via chemical precipitation using lime,caustic,or sulfide,but the effluents do not meet the increasingly stringent discharge standards.This issue has spurred an increase in research and the development of innovative treatment technologies,among which those using nanoparticles receive particular interest.Among such initiatives,treatment using nanoscale zero-valent iron(nZVI)is one of the best developed.While nZVI is already well known for its site-remediation use,this perspective highlights its application in HMW treatment with metal recovery.We demonstrate several advantages of nZVI in this wastewater application,including its multifunctionality in sequestrating a wide array of metal(loid)s(>30 species);its capability to capture and enrich metal(loid)s at low concentrations(with a removal capacity reaching 500 mg·g^(-1)nZVI);and its operational convenience due to its unique hydrodynamics.All these advantages are attributable to nZVI’s diminutive nanoparticle size and/or its unique iron chemistry.We also present the first engineering practice of this application,which has treated millions of cubic meters of HMW and recovered tons of valuable metals(e.g.,Cu and Au).It is concluded that nZVI is a potent reagent for treating HMW and that nZVI technology provides an eco-solution to this toxic waste. 展开更多
关键词 Nanoscale zero-valent iron WASTEWATER Heavy metal Resource recovery
下载PDF
Effect of Power Ultrasonic on Solidification Structure of HT150 Gray Cast Iron 被引量:4
2
作者 QI Fei-peng ZHAI Qi-jie GAO Shou-lei ZHANG Hai-bo DING Li 《Journal of Iron and Steel Research(International)》 SCIE CAS CSCD 2005年第6期33-36,共4页
Power ultrasonic treatment is an efficient way to improve the solidification structure and mechanical properties of metals. The effect of 600 W power ultrasonic treatment on the solidification process and structure of... Power ultrasonic treatment is an efficient way to improve the solidification structure and mechanical properties of metals. The effect of 600 W power ultrasonic treatment on the solidification process and structure of HT150 gray cast iron has been studied, and the fining mechanism of power ultrasonic has been analyzed. 展开更多
关键词 power ultrasonic HT150 gray cast iron graphite morphology SOLIDIFICATION
下载PDF
Treatment of simulated wastewater containing Reactive Red 195 by zero-valent iron/activated carbon combined with microwave discharge electrodeless lamp/sodium hypochlorite 被引量:6
3
作者 Jie Fu Zhen Xu +4 位作者 Qing-Shan Li Song Chen Shu-Qing An Qing-Fu Zeng Hai-Liang Zhu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2010年第4期512-518,共7页
A comparative study of treatment of simulated wastewater containing Reactive Red 195 using zero-valent iron/activated carbon (ZVI/AC), microwave discharge electrodeless lamp/sodium hypochlorite (MDEL/NaCIO) and th... A comparative study of treatment of simulated wastewater containing Reactive Red 195 using zero-valent iron/activated carbon (ZVI/AC), microwave discharge electrodeless lamp/sodium hypochlorite (MDEL/NaCIO) and the combination of ZVI/AC- MDEL/NaCIO was conducted. The preliminary results showed the two steps method of ZVI/AC-MDEL/NaCIO had much higher degradation efficiency than both single steps. The final color removal percentage was nearly up to 100% and the chemical oxygen demand reduction percentage was up to approximately 82%. The effects of operational parameters, including initial pH value of simulated wastewater, ZVI/AC ratio and particle size of ZVI were also investigated. In addition, from the discussion of synergistic effect between ZVI/AC and MEDL/NaCIO, we found that in the ZVI/AC-MEDL/NaCIO process, ZVI/AC could break the azo bond firstly and then MEDLfNaCIO degraded the aromatic amine products effectively. Reversing the order would reduce the degradation efficiency. 展开更多
关键词 activated carbon microwave discharge electrodeless lamp Reactive Red 195 sodium hypochlorite zero-valent iron.
下载PDF
Eco friendly adsorbents for removal of phenol from aqueous solution employing nanoparticle zero-valent iron synthesized from modified green tea bio-waste and supported on silty clay 被引量:1
4
作者 Shaimaa T.Kadhum Ghayda Yassen Alkindi Talib M.Albayati 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第8期19-28,共10页
The present research investigated a novel route for the synthesis of nanoparticle zero-valent iron(NZVI)utilizing an aqueous extract of green tea waste as a reductant with ferric chloride.Also,the supported nanopartic... The present research investigated a novel route for the synthesis of nanoparticle zero-valent iron(NZVI)utilizing an aqueous extract of green tea waste as a reductant with ferric chloride.Also,the supported nanoparticle zerovalent iron was synthesized using natural silty clay as a support material(SC-NZVI).The NZVI and SC-NZVI were characterized by infrared spectroscopy(FTIR),scanning electron microscope(SEM),X-ray diffraction(XRD),Brunauer–Emmett–Teller(BET),and zeta potential(ζ).The interpretation of the results demonstrated that the polyphenol and other antioxidants in green tea waste can be used as reduction and capping agents in NZVI synthesis,with silty clay an adequate support.Additionally,the experiments were carried out to explore phenol adsorption by NZVI and SC-NZVI.To determine the optimum conditions,the impact of diverse experimental factors(i.e.,initial pH,adsorbent dose,temperature,and concentration of phenol)was studied.Langmuir,Freundlich,and Tempkin isotherms were used as representatives of adsorption equilibrium.The obtained results indicated that the adsorption processes for both NZVI and SC-NZVI well fitted by the Freundlich isotherm model.The appropriateness of pseudofirstorder and pseudosecondorder kinetics was investigated.The experimental kinetics data were good explained by the second-order model.The thermodynamic parameters(ΔH0,ΔS0,andΔG0)for NZVI and SC-NZVI were determined.The maximum removal rates of phenol at optimum conditions,when adsorbed onto NZVI and SC-NZVI,were found to be 94.8%and 90.1%,respectively. 展开更多
关键词 Wastewater treatment Environment Nano zero-valent iron Silty clay PHENOL Adsorption
下载PDF
Biochar Supported Nanoscale Zero-valent Iron Composites for the Removal of Petroleum from Wastewater 被引量:2
5
作者 Qin Feifei Xu Wenfei +3 位作者 Hao Boyu Yin Linghao Song Jiayu Zhang Xiuxia 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2021年第4期47-57,共11页
Considering the need for efficiently and rapidly treating oily wastewater while preventing secondary pollution,the nanoscale zero-valent iron(nZVI)was supported on biochar prepared by using a spent mushroom substrate(... Considering the need for efficiently and rapidly treating oily wastewater while preventing secondary pollution,the nanoscale zero-valent iron(nZVI)was supported on biochar prepared by using a spent mushroom substrate(SMS),to produce an iron-carbon composite(SMS-nZVI).The ability of the SMS-nZVI to treat wastewater containing high concentration of oil was then comprehensively evaluated.The morphology,structure,and other properties of the composite were characterized by using scanning electron microscopy,transmission electron microscopy,the Brunauer-Emmett-Teller nitrogen sorption analysis,and the Fourier transform infrared spectroscopy.The results show that the biochar prepared by using the SMS can effectively prevent the agglomeration of nZVI and increase the overall specific surface area,thereby enhancing the absorption of petroleum by the composite.Experiments reveal that compared with the SMS and nZVI,the SMS-nZVI composite removes petroleum faster and more efficiently from wastewater.Under optimized conditions involving an nZVI to biochar mass ratio of 1:5 and a pH value of 4,the efficiency for removal of petroleum from wastewater with an initial petroleum concentration of 1000 mg/L could reach 95%within 5 h.Based on a natural aging treatment involving exposure to air for 30 d,the SMS-nZVI composite retained an oil removal rate of higher than 62%,and this result could highlight its stability for practical applications. 展开更多
关键词 oily wastewater nanoscale zero-valent iron(nZVI) spent mushroom substrate(SMS) SMS-nZVI composite
下载PDF
Effect of ultrasonic treatment on formation of iron-containing intermetallic compounds in AlSi alloys 被引量:4
6
作者 Yu-bo Zhang Svynarenko Kateryna Ting-ju Li 《China Foundry》 SCIE 2016年第5期316-321,共6页
Iron is generally regarded as an unavoidable impurity in Al-Si casting alloys.The acicular AI_3Fe andβ-AI_5FeSi(or Al_9Si_2Fe_2) are common iron-containing intermetallic compounds(IMCs) in conventional structure whic... Iron is generally regarded as an unavoidable impurity in Al-Si casting alloys.The acicular AI_3Fe andβ-AI_5FeSi(or Al_9Si_2Fe_2) are common iron-containing intermetallic compounds(IMCs) in conventional structure which have a detrimental impact on the mechanical properties.In this paper,ultrasonic field(USF) was applied to modify acicular iron phases in AI-12%Si-2%Fe and AI-2%Fe alloys.The results show that the USF applied to Al-Fe alloys caused the morphological transformation of both primary and eutectic AI_3Fe from acicular to blocky and granular without changes in their composition.In the case of Al-Si-Fe alloys,ultrasonic treatment led to both morphological and compositional conversion of the ternary iron IMCs.When the USF was applied,the acicular β-AI_9Si_2Fe_2 was substituted by star-like α-AI_(12)Si_2Fe_3.The modification rate of both binary and ternary iron IMCs relates to the USF treatment duration.The undercooling induced by the ultrasonic vibration contributes to the nucleation of intermetallics and can explain the transformation effect. 展开更多
关键词 ultrasonic treatment Al-Si alloy iron-containing intermetallics MODIFICATION
下载PDF
H<sub>2</sub>Gas Charging of Zero-Valent Iron and TCE Degradation
7
作者 Chen Zhao Eric J. Reardon 《Journal of Environmental Protection》 2012年第3期272-279,共8页
Granular zero-valent iron (ZVI) has been widely used to construct permeable reactive barriers (PRB) for the in situ remediation of groundwater contaminated with halogenated hydrocarbons. In the anaerobic condition of ... Granular zero-valent iron (ZVI) has been widely used to construct permeable reactive barriers (PRB) for the in situ remediation of groundwater contaminated with halogenated hydrocarbons. In the anaerobic condition of most groundwater flow systems, iron undergoes corrosion by water and results in hydrogen gas generation. Several studies have shown that some of the hydrogen gas generated at the iron/water interface can diffuse into the iron lattice. Hydrogen gas also can be an electron donor for dechlorination of chlorinated compounds. In this study, the possibility of hydrogen gas bound in the lattice of ZVI playing a role in dehalogenation and improving the degradation efficiency of ZVI was evaluated. Two different granular irons were tested: one obtained from Quebec Metal Powders Ltd (QMP) and the other from Connelly-GPM. Ltd. For each type of iron, two samples were mixed with water and sealed in testing cells. Since the rate of hydrogen entry varies directly with the square root of the hydrogen pressure, one sample was maintained for several weeks under near-vacuum conditions to minimize the amount of hydrogen entering the iron lattice. The other sample was maintained for the same period at a hydrogen pressure of over 400 kPa to maximize the amount of hydrogen entering the iron lattice. The degradation abilities of the reacted ironsand the original iron materials were tested by running several sets of batch tests. The results of this study show little to no improvement of inorganic TCE degradation reactions due to the presence of lattice-stored hydrogen in iron material. This is probably due to the high energiesrequired to release hydrogen trapped in the iron lattice. However, there are certain chemical compounds that can promote hydrogen release from the iron lattice, and there may be bacteria that can utilize lattice-bound hydrogen to carry out dechlorination reactions. 展开更多
关键词 GRANULAR zero-valent iron Hydrogen TCE REMEDIATION GROUNDWATER
下载PDF
Sensitivity of Nanostructured Iron Metal on Ultrasonic Properties
8
作者 Alok Kumar Gupta Archana Gupta +1 位作者 Devraj Singh Sudhanshu Tripathi 《Open Journal of Metal》 2011年第2期34-40,共7页
The present investigation is focused on the influence of the nanocrystalline structure of pure iron metal on the ultrasonic properties in the temperature range 100 - 300 K. The ultrasonic attenuation due to phonon- ph... The present investigation is focused on the influence of the nanocrystalline structure of pure iron metal on the ultrasonic properties in the temperature range 100 - 300 K. The ultrasonic attenuation due to phonon- phonon interaction and thermoelastic relaxation phenomena has been evaluated for longitudinal and shear waves along , and crystallographic directions. The second-and third-order elastic constants, ultrasonic velocities, thermal relaxation, anisotropy and acoustic coupling constants were also com- puted for the evaluation of ultrasonic attenuation in this temperature scale. The direction is most ap- propriate to study longitudinal sound waves, while , direction are best to propagate shear waves due to lowest values of attenuation in these directions. Other physical properties correlated with obtained results have been discussed. 展开更多
关键词 iron METAL Elastic PROPERTIES ultrasonic ATTENUATION
下载PDF
Study of diclofenac removal by the application of combined zero-valent iron and calcium peroxide nanoparticles in groundwater
9
作者 Wen Liang Nian-qing Zhou +3 位作者 Chao-meng Dai Yan-ping Duan Lang Zhou Yao-jen Tu 《Journal of Groundwater Science and Engineering》 2021年第3期171-180,共10页
Diclofenac(DCF)is one of the most frequently detected pharmaceuticals in groundwater,posing a great threat to the environment and human health due to its toxicity.To mitigate the DCF contamination,experiments on DCF d... Diclofenac(DCF)is one of the most frequently detected pharmaceuticals in groundwater,posing a great threat to the environment and human health due to its toxicity.To mitigate the DCF contamination,experiments on DCF degradation by the combined process of zero-valent iron nanoparticles(nZVI)and nano calcium peroxide(nCaO_(2))were performed.A batch experiment was conducted to examine the influence of the adding dosages of both nZVI and nCaO_(2)nanoparticles and pH value on the DCF removal.In the meantime,the continuous-flow experiment was done to explore the sustainability of the DCF degradation by jointly adding nZVI/nCaO_(2)nanoparticles in the reaction system.The results show that the nZVI/nCaO_(2)can effectively remove the DCF in the batch test with only 0.05 g/L nZVI and 0.2 g/L nCaO_(2)added,resulting in a removal rate of greater than 90%in a 2-hour reaction with an initial pH of 5.The degradation rate of DCF was positively correlated with the dosage of nCaO_(2),and negatively correlated with both nZVI dosage and the initial pH value.The order of significance of the three factors is identified as pH value>nZVI dosage>nCaO_(2)dosage.In the continuous-flow reaction system,the DCF removal rates remained above 75%within 150 minutes at the pH of 5,with the applied dosages of 0.5 g/L for nZVI and 1.0 g/L for nCaO_(2).These results provide a theoretical basis for the nZVI/nCaO_(2)application to remove DCF in groundwater. 展开更多
关键词 Nanoscale zero-valent iron(nZVI) Nano calcium peroxide(nCaO_(2)) DICLOFENAC Fenton-like reaction Groundwater pollution
下载PDF
Remediation of Nitrate and ChromiumContaminated Groundwater by Zero-valent IronPRB
10
《环境科学前沿(中英文版)》 2015年第2期39-45,共7页
Through continuous flow experimentation, the reactivity characteristics of zero-valent iron (Fe0)-PRB with ground watercontaminated by nitrate, chromium and the combination of nitrate and chromium were investigated.... Through continuous flow experimentation, the reactivity characteristics of zero-valent iron (Fe0)-PRB with ground watercontaminated by nitrate, chromium and the combination of nitrate and chromium were investigated. The results showed thatnitrate could be effectively deoxidized by zero-valent iron. NO^2- -N was the transitional deoxidization product, while NH4+-Nwas the main final product in the effluent. Chromium could be deoxidized by zero-valent iron more effectively for the chromiumcontaminated ground water which was treated by PRB. The redox products such as Fe3+ and Cr(III) precipitated on the packingmedia during the process. For the treatment of ground water contaminated by both nitrate and chromium, the results showed thatthe Cr(VI) removal efficiency by the zero-valent iron was not affected by the co-existence of NO^3- -N, while the NO^3- -N removalefficiency decreased with the existence of Cr(VI). 展开更多
关键词 zero-valent iron PERMEABLE Reactive Barrier(PRB) Ground Water NITRATE CHROMIUM
下载PDF
Corrosion behaviors and kinetics of nanoscale zero-valent iron in water:A review 被引量:1
11
作者 Chenliu Tang Xingyu Wang +2 位作者 Yufei Zhang Nuo Liu Xiang Hu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第1期391-406,共16页
Knowledge on corrosion behaviors and kinetics of nanoscale zero-valent iron(nZVI)in aquatic environment is particularly significant for understanding the reactivity,longevity and stability of nZVI,as well as providing... Knowledge on corrosion behaviors and kinetics of nanoscale zero-valent iron(nZVI)in aquatic environment is particularly significant for understanding the reactivity,longevity and stability of nZVI,as well as providing theoretical guidance for developing a cost-effective nZVI-based technology and designing large-scale applications.Herein,this review gives a holistic overview on the corrosion behaviors and kinetics of nZVI in water.Firstly,Eh-pH diagram is introduced to predict the thermodynamics trend of iron corrosion.The morphological,structural,and compositional evolution of(modified-)nZVI under different environmental conditions,assisted with microscopic and spectroscopic evidence,is then summarized.Afterwards,common analytical methods and characterization technologies are categorized to establish time-resolved corrosion kinetics of nZVI in water.Specifically,stable models for calculating the corrosion rate constant of nZVI as well as electrochemical methods for monitoring the redox reaction are discussed,emphasizing their capabilities in studying the dynamic iron corrosion processes.Finally,in the future,more efforts are encouraged to study the corrosion behaviors of nZVI in long-term practical application and further build nanoparticles with precisely tailored properties.We expect that our work can deepen the understanding of the nZVI chemistry in aquatic environment. 展开更多
关键词 Nanoscale zero-valent iron(nZVI) Corrosion behaviors Corrosion kinetics nZVI evolution
原文传递
Effects of zero-valent iron added in the flooding or drainage process on cadmium immobilization in an acid paddy soil
12
作者 Hanbing Meng Shiwen Hu +8 位作者 Zebin Hong Wenting Chi Guojun Chen Kuan Cheng QiWang Tongxu Liu Fangbai Li Kexue Liu Yang Yang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第4期19-31,共13页
Zero-valent iron(ZVI)is a promising material for the remediation of Cd-contaminated paddy soils.However,the effects of ZVI added during flooding or drainage processes on cadmium(Cd)retention remain unclear.Herein,Cd-c... Zero-valent iron(ZVI)is a promising material for the remediation of Cd-contaminated paddy soils.However,the effects of ZVI added during flooding or drainage processes on cadmium(Cd)retention remain unclear.Herein,Cd-contaminated paddy soil was incubated for 40days of flooding and then for 15 days of drainage,and the underlying mechanisms of Cd immobilization coupled with Fe/S/N redox processes were investigated.The addition of ZVI to the flooding process was more conducive to Cd immobilization.Less potential available Cd was detected by adding ZVI before flooding,which may be due to the increase in paddy soil pH and newly formed secondary Fe minerals.Moreover,the reductive dissolution of Fe minerals promoted the release of soil colloids,thereby increasing significantly the surface sites and causing Cd immobilization.Additionally,the addition of ZVI before flooding played a vital role in Cd retention after soil drainage.In contrast,the addition of ZVI in the drainage phase was not conducive to Cd retention,which might be due to the rapid decrease in soil pH that inhibited Cd adsorption and further immobilization on soil surfaces.The findings of this study demonstrated that Cd availability in paddy soil was largely reduced by adding ZVI during the flooding period and provide a novel insight into the mechanisms of ZVI remediation in Cd-contaminated paddy soils. 展开更多
关键词 Paddy soil zero-valent iron CADMIUM Flooding and drainage REMEDIATION
原文传递
Amino acids modified nanoscale zero-valent iron:Density functional theory calculations,experimental synthesis and application in the Fenton-like degradation of organic solvents
13
作者 Xingchen Yang Fucheng Ming +1 位作者 Jianlong Wang Lejin Xu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第1期296-309,共14页
To improve the adsorption and catalytic performance of heterogeneous Fenton-like catalysts for oil wastes,amino acids were used to modify nanoscale zero-valent iron(AA@Fe^(0)),which were applied in the Fenton-like deg... To improve the adsorption and catalytic performance of heterogeneous Fenton-like catalysts for oil wastes,amino acids were used to modify nanoscale zero-valent iron(AA@Fe^(0)),which were applied in the Fenton-like degradation of organic solvents(tributyl phosphate and n-dodecane,named TBP and DD).Twelve amino acids,i.e.,glycine(Gly),alanine(Ala),leucine(Leu),proline(Pro),phenylalanine(Phe),methionine(Met),cysteine(Cys),asparagine(Asn),serine(Ser),glutamic acid(Glu),lysine(Lys)and arginine(Arg),were selected and calculated by density functional theory(DFT).The optimized structure,charge distribution,the highest occupied molecular orbital(HOMO),the lowest unoccupied molecular orbital(LUMO),interaction region indicator(IRI)isosurface map and adsorption energy of AA@Fe^(0),AA@Fe^(0)-TBP and AA@Fe^(0)-DD were studied,which indicated that Fe is more likely to approach and charge transfer with-COO and-NH_(3) on theα-carbon of amino acids.There is strong attraction between Fe and–COO,and Van der Waals force between Fe and-NH_(3),respectively.In the interaction of AA@Fe^(0)with TBP and DD,Van der Waal force plays an important role.AA@Fe^(0)was synthesized in laboratory and characterized to investigate physicochemical properties.In Fenton-like degradation of organic solvents,the change of COD in water phase during the degradation process as well as the volume of the organic phase after the reaction were investigated.The results of calculations combined with experiments showed that Ser-modified Fe^(0)performed the best in these amino acids,with 98%removal of organic solvents.A possible catalytic mechanism was proposed in which amino acids acted a linking role between Fe and organic solvents,activating H_(2)O_(2)to generate hydroxyl radicals for the degradation of organic solvents. 展开更多
关键词 Amino acids Nanoscale zero-valent iron Density functional theory Organic solvents Fenton-like degradation
原文传递
Alcohothermal synthesis of sulfidated zero-valent iron for enhanced Cr(Ⅵ)removal
14
作者 Zhongsen Wang Lijun Qiu +6 位作者 Yunhua Huang Meng Zhang Xi Cai Fanyu Wang Yang Lin Yanbiao Shi Xiao Liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第7期192-195,共4页
Sulfidation of zero-valent iron(ZVI)has attracted broad attention in recent years for improving the sequestration of contaminants from water.However,sulfidated ZVI(S-ZVI)is mostly synthesized in the aqueous phase,whic... Sulfidation of zero-valent iron(ZVI)has attracted broad attention in recent years for improving the sequestration of contaminants from water.However,sulfidated ZVI(S-ZVI)is mostly synthesized in the aqueous phase,which usually causes the formation of a thick iron oxide layer on the ZVI surface and hinders the efficient electron transfer to the contaminants.In this study,an alcohothermal strategy was employed for S-ZVI synthesis by the one-step reaction of iron powder with elemental sulfur.It is found that ferrous sulfide(FeS)with high purity and fine crystallization was formed on the ZVI surface,which is extremely favorable for electron transfer.Cr(Ⅵ)removal experiments confirm that the rate constant of SZVI synthesized by the alcohothermal method was 267.1-and 5.4-fold higher than those of un-sulfidated ZVI and aqueous-phase synthesized S-ZVI,respectively.Systematic characterizations proved that Cr(Ⅵ)was reduced and co-precipitated on S-ZVI in the form of a Fe(Ⅲ)/Cr(Ⅲ)/Cr(Ⅵ)composite,suggesting its environmental benignancy. 展开更多
关键词 zero-valent iron SULFIDATION Alcohothermal method Cr(Ⅵ)removal
原文传递
Semisolid casting with ultrasonically melt-treated billets of Al-7mass%Si alloys 被引量:7
15
作者 Yoshiki Tsunekawa Masahiro Okumiya Takahiro Motomura 《China Foundry》 SCIE CAS 2012年第1期78-83,共6页
The demand for high performance cast aluminum alloy components is often disturbed by increasing impurity elements,such as iron accumulated from recycled scraps.It is strongly required that coarse plate-like iron compo... The demand for high performance cast aluminum alloy components is often disturbed by increasing impurity elements,such as iron accumulated from recycled scraps.It is strongly required that coarse plate-like iron compound of β-Al5FeSi turns into harmless form without the need for applying refining additives or expensive virgin ingots.The microstructural modification of Al-7mass%Si alloy billets with different iron contents was examined by applying ultrasonic vibration during the solidification.Ultrasonically melt-treated billets were thixocast right after induction heating up to the semisolid temperature of 583 oC,the microstructure and tensile properties were evaluated in the thixocast components.Globular primary α-Al is required to fill up a thin cavity in thixocasting,so that the microstructural modification by ultrasonic melt-treatment was firstly confirmed in the billets.With ultrasonic melt-treatment in the temperature range of 630 oC to 605 oC,the primary α-Al transforms itself from dendrite into fine globular in morphology.The coarse plate-like β-Al5FeSi compound becomes markedly finer compared with those in non-treated billets.Semisolid soaking up to 583 oC,does not appreciably affect the size of β-Al5FeSi compounds;however,it affects the solid primary α-Al morphology to be more globular,which is convenient for thixocasting.After thixocasting with preheated billets,eutectic silicon plates are extremely refined due to the rapid solidification arising from low casting temperature.The tensile strength of thixocast samples with different iron contents does not change much even at 2mass% of iron,when thixocast with ultrasonically melt-treated billets.However,thixocast Al-7mass%Si-2mass%Fe alloy with non-treated billets exhibits an inferior strength of 80MPa,compared with 180MPa with ultrasonically melt-treated billets.The elongation is also improved by about a factor of two in thixocastings with ultrasonically melt-treated billets for all iron contents of Al-7mass%Si alloys,for example,the elongation of 11% in thixocast of Al-7mass%Si-0.5mass%Fe alloy with ultrasonically melt-treated billets,5% in that with non-treated billets. 展开更多
关键词 cast Al-Si alloy ultrasonic radiation THIXOCASTING α-Al iron compound
下载PDF
Surfactant-assisted removal of 2,4-dichlorophenol from soil by zero-valent Fe/Cu activated persulfate 被引量:1
16
作者 Ling Xu Ji Li +4 位作者 Wenbin Zeng Kai Liu Yibing Ma Liping Fang Chenlu Shi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第4期447-455,共9页
The organic compounds contaminated soil substantially threatens the growth of plants and food safety.In this study,we synthesis zero-valent bimetallic Fe/Cu catalysts for the degradation of 2,4-dichlorophenol(DCP)in s... The organic compounds contaminated soil substantially threatens the growth of plants and food safety.In this study,we synthesis zero-valent bimetallic Fe/Cu catalysts for the degradation of 2,4-dichlorophenol(DCP)in soils with persulfate(PS)in combination of organic surfactants and exploring the main environmental impact factors.The kinetic experiments show that the 5%(mass)dosage of Fe/Cu exhibits a higher degradation efficiency(86%)of DCP in soils,and the degradation efficiency of DCP increases with the increase of the initial PS concentration.Acidic conditions are favorable for the DCP degradation in soils.More importantly,the addition of Tween-80,and Triton-100 can obviously desorb DCP from the soil surface,which enhances the degradation efficiency of DCP in soils by Fe/Cu and PS reaction system.Furthermore,the Quenching experiments demonstrate that SO_(4)^(-1)·and·OH are the predominant radicals for the degradation of DCP during the Fe/Cu and PS reaction system as well as non-radical also exist.The findings of this work provide an effective method for remediating DCP from soils. 展开更多
关键词 zero-valent iron and copper Advanced oxidation process PERSULFATE Chlorinated organic pollutants SURFACTANT
下载PDF
废旧磷酸铁锂电池集流体分离与正极材料再生
17
作者 陈娟 张承龙 +1 位作者 张西华 马恩 《有色金属工程》 CAS 北大核心 2024年第1期151-159,共9页
通过优化NaOH碱溶条件高效去除集流体黏结剂,保留完整铝箔;利用固相法再生LiFePO 4。当NaOH为0.8 mol/L、固液比20 mL/g、40℃反应10 min,正极材料的分离率达到99.78%,超声1 min后铝箔回收率为76%,解决了碱溶条件下铝箔回收的繁琐问题... 通过优化NaOH碱溶条件高效去除集流体黏结剂,保留完整铝箔;利用固相法再生LiFePO 4。当NaOH为0.8 mol/L、固液比20 mL/g、40℃反应10 min,正极材料的分离率达到99.78%,超声1 min后铝箔回收率为76%,解决了碱溶条件下铝箔回收的繁琐问题。球磨转速500 r、球磨5 h,补充10%高纯LiFePO 4的方式固相再生,再生LiFePO 4的最高放电比容量为新材料的94.75%,60次循环测试后为初始放电比容量的88.62%。 展开更多
关键词 废旧磷酸铁锂电池 碱溶-超声法 高效分离 固相再生
下载PDF
等温淬火球墨铸铁厚壁工件无损检测方法的对比研究
18
作者 章文显 桑劲鹏 +2 位作者 胡珈源 高立 陆春宇 《铸造》 CAS 2024年第5期683-687,共5页
探讨了等温淬火球墨铸铁厚壁工件的孔洞类缺陷检测方法,分别进行了常规超声检测、相控阵超声检测、γ射线照相检测和高能X射线数字成像检测试验。对于壁厚范围60~135 mm的区域,超声检测体现了更高的检测灵敏度,可以检出Φ0.9 mm反射当... 探讨了等温淬火球墨铸铁厚壁工件的孔洞类缺陷检测方法,分别进行了常规超声检测、相控阵超声检测、γ射线照相检测和高能X射线数字成像检测试验。对于壁厚范围60~135 mm的区域,超声检测体现了更高的检测灵敏度,可以检出Φ0.9 mm反射当量的单个缺陷以及区域性缺陷。Co60、Ir192以及9MeV射线数字成像检测的检测效果较差,难以发现厚壁工件中细小的缺陷;450 kV射线数字成像检测设备可以检出薄层结构的疏松。 展开更多
关键词 等温淬火球墨铸铁 厚壁工件 超声检测 射线检测
下载PDF
Insights into influence of aging processes on zero-valent iron modified biochar in copper(II) immobilization: from batch solution to pilot-scale investigation
19
作者 Huabin Wang Dingxiang Chen +4 位作者 Yi Wen Ting Cui Ying Liu Yong Zhang Rui Xu 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2023年第7期880-892,共13页
The zero-valent iron modified biochar materials are widely employed for heavy metals immobilization.However,these materials would be inevitably aged by natural forces after entering into the environment,while there ar... The zero-valent iron modified biochar materials are widely employed for heavy metals immobilization.However,these materials would be inevitably aged by natural forces after entering into the environment,while there are seldom studies reported the aging effects of zero-valent iron modified biochar.In this work,the hydrogen peroxide and hydrochloric acid solution were applied to simulate aging conditions of zero-valent iron modified biochar.According to the results,the adsorption capacity of copper(II)contaminants on biochar,zero-valent iron modified biochar-1,and zero-valent iron modified biochar-2 after aging was decreased by 15.36%,22.65%and 23.26%,respectively.The surface interactions were assigned with chemisorption occurred on multi-molecular layers,which were proved by the pseudo-second-order and Langmuir models.After aging,the decreasing of capacity could be mainly attributed to the inhibition of ion-exchange and zero-valent iron oxidation.Moreover,the plant growth and soil leaching experiments also proved the effects of aging treatment,the zero-valent iron modified biochar reduced the inhibition of copper(II)bioavailability and increased the mobility of copper(II)after aging.All these results bridged the gaps between bio-adsorbents customization and their environmental behaviors during practical agro-industrial application. 展开更多
关键词 zero-valent iron modified biochar aging processes copper removal adsorption pilot-scale experiments
原文传递
高纯纳米氧化铁的制备
20
作者 吴文军 韩召 +2 位作者 张福元 刘鹏飞 李杰 《中国粉体技术》 CSCD 2024年第1期56-65,共10页
【目的】改进纳米氧化铁的制备工艺流程,制备高纯纳米氧化铁。【方法】首先,采用重结晶法去除硫酸亚铁中Ca^(2+)、 Mg^(2+)、 Mn^(2+)等杂质离子,采用氟化铵沉淀进一步去除硫酸亚铁中的Ca^(2+)、 Mg^(2+)杂质离子,然后使用过氧化氢氧化... 【目的】改进纳米氧化铁的制备工艺流程,制备高纯纳米氧化铁。【方法】首先,采用重结晶法去除硫酸亚铁中Ca^(2+)、 Mg^(2+)、 Mn^(2+)等杂质离子,采用氟化铵沉淀进一步去除硫酸亚铁中的Ca^(2+)、 Mg^(2+)杂质离子,然后使用过氧化氢氧化法、氨水沉淀法对硫酸亚铁进行沉淀制得羟基氧化铁,接着采用调浆法和超声法洗涤羟基氧化铁制得前驱体,最后焙烧前驱体制得高纯纳米氧化铁;使用仪器和设备分析高纯纳米氧化铁的颗粒形貌、粒径分布和杂质离子的质量浓度。【结果】改进后的制备高纯纳米氧化铁的工艺流程为:将温度为60℃时的饱和硫酸亚铁溶液进行降温,在温度至10℃时实现2次重结晶,将重结晶后的硫酸亚铁配置为pH为6的溶液;在水浴温度为30℃时,氟化铵过量系数设为5以使Ca^(2+)、 Mg^(2+)沉淀,制得纯净硫酸亚铁溶液;利用过氧化氢氧化、氨水沉淀硫酸亚铁溶液制得羟基氧化铁;重复利用调浆洗涤、超声洗涤羟基氧化铁去除铵根离子和硫酸根离子;将沉淀物在温度为600℃时焙烧1 h,制得高纯纳米氧化铁。【结论】由改进的制备方法制得的高纯纳米氧化铁球形颗粒形貌均匀,中位粒径为300 nm,高纯纳米氧化铁中α-Fe_(2)O_(3)的质量分数大于99.95%。 展开更多
关键词 高纯纳米氧化铁 重结晶法 氟化铵沉淀 调浆-超声洗涤法 氨水沉淀法 物相分析
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部