The strength curves of lightweight aggregate concrete (LWAC) were tested based on detecting LWAC with density of 1 400-1 900 kg/m3 and LWAC with strength grade of LC15-LC50 by rebound method and ultrasonic-rebound c...The strength curves of lightweight aggregate concrete (LWAC) were tested based on detecting LWAC with density of 1 400-1 900 kg/m3 and LWAC with strength grade of LC15-LC50 by rebound method and ultrasonic-rebound combined method.The results show that the common measured strength curves tested by above two methods can not satisfy the required accuracy of LWAC strength test.In addition,specified compressive strength curves of testing LWAC by rebound method and ultrasonic-rebound combined method are obtained,respectively.展开更多
To effectively quantify the impact of distributed photovoltaic(PV)access on the distribution network,this paper proposes a comprehensive evaluation method of distributed PV grid connection combining subjective and obj...To effectively quantify the impact of distributed photovoltaic(PV)access on the distribution network,this paper proposes a comprehensive evaluation method of distributed PV grid connection combining subjective and objective combination of assignment and technique for order preference by similarity to an ideal solution(TOPSIS)—rank sum ratio(RSR)(TOPSIS-RSR)method.Based on the traditional distribution network evaluation system,a comprehensive evaluation system has been constructed.It fully considers the new development requirements of distributed PV access on the environmental friendliness and absorptive capacity of the distribution grid and comprehensively reflects the impact of distributed PV grid connection.The analytic hierarchy process(AHP)was used to determine the subjective weights of the primary indicators,and the Spearman consistency test was combined to determine the weights of the secondary indicators based on three objective assignment methods.The subjective and objective combination weights of each assessment indicator were calculated through the principle of minimum entropy.Calculate the distance between the indicators to be evaluated and the positive and negative ideal solutions,the relative closeness ranking,and qualitative binning by TOPSIS-RSR method to obtain the comprehensive evaluation results of different scenarios.By setting up different PV grid-connected scenarios and utilizing the IEEE33 node simulation algorithm,the correctness and effectiveness of the proposed subject-object combination assignment and integrated assessment method are verified.展开更多
As children mature, bike products for children in the market develop at the same time, and the conditions are frequently updated. Certain problems occur when using a bike, such as cycle overlapping, repeating function...As children mature, bike products for children in the market develop at the same time, and the conditions are frequently updated. Certain problems occur when using a bike, such as cycle overlapping, repeating function, and short life cycle, which go against the principles of energy conservation and the environmental protection intensive design concept. In this paper, a rational multi-function method of design through functional superposition, transformation, and technical implementation is proposed. An organic combination of frog-style scooter and children’s tricycle is developed using the multi-function method. From the ergonomic perspective, the paper elaborates on the body size of children aged 5 to 12 and effectively extracts data for a multi-function children’s bike, which can be used for gliding and riding. By inverting the body, parts can be interchanged between the handles and the pedals of the bike. Finally, the paper provides a detailed analysis of the components and structural design, body material, and processing technology of the bike. The study of Industrial Product Innovation Design provides an effective design method to solve the bicycle problems, extends the function problems, improves the product market situation, and enhances the energy saving feature while implementing intensive product development effectively at the same time.展开更多
Thermodynamic analysis was applied to study combined partial oxidation and carbon dioxide reforming of methane in view of carbon formation. The equilibrium calculations employing the Gibbs energy minimization were per...Thermodynamic analysis was applied to study combined partial oxidation and carbon dioxide reforming of methane in view of carbon formation. The equilibrium calculations employing the Gibbs energy minimization were performed upon wide ranges of pressure (1-25 atm), temperature (600-1300 K), carbon dioxide to methane ratio (0-2) and oxygen to methane ratio (0-1). The thermodynamic results were compared with the results obtained over a Ru supported catalyst. The results revealed that by increasing the reaction pressure methane conversion decreased. Also it was found that the atmospheric pressure is the preferable pressure for both dry reforming and partial oxidation of methane and increasing the temperature caused increases in both activity of carbon and conversion of methane. The results clearly showed that the addition of O2 to the feed mixture could lead to a reduction of carbon deposition.展开更多
A novel control method for a general class of nonlinear systems using fuzzy logic systems (FLSs) is presertted. Indirect and direct methods are combined to design the adaptive fuzzy output feedback controller and a ...A novel control method for a general class of nonlinear systems using fuzzy logic systems (FLSs) is presertted. Indirect and direct methods are combined to design the adaptive fuzzy output feedback controller and a high-gain observer is used to estimate the derivatives of the system output. The closed-loop system is proven to be semiglobally uniformly ultimately bounded. In addition, it is shown that if the approximation accuracy of the fuzzy logic system is high enough and the observer gain is chosen sufficiently large, an arbitrarily small tracking error can be achieved. Simulation results verify the effectiveness of the newly designed scheme and the theoretical discussion.展开更多
We propose a combined shape and topology optimization approach in this research for 3D acoustics by using the isogeometric boundary element method with subdivision surfaces.The existing structural optimization methods...We propose a combined shape and topology optimization approach in this research for 3D acoustics by using the isogeometric boundary element method with subdivision surfaces.The existing structural optimization methods mainly contain shape and topology schemes,with the former changing the surface geometric profile of the structure and the latter changing thematerial distribution topology or hole topology of the structure.In the present acoustic performance optimization,the coordinates of the control points in the subdivision surfaces fine mesh are selected as the shape design parameters of the structure,the artificial density of the sound absorbing material covered on the structure surface is set as the topology design parameter,and the combined topology and shape optimization approach is established through the sound field analysis of the subdivision surfaces boundary element method as a bridge.The topology and shape sensitivities of the approach are calculated using the adjoint variable method,which ensures the efficiency of the optimization.The geometric jaggedness and material distribution discontinuities that appear in the optimization process are overcome to a certain degree by the multiresolution method and solid isotropic material with penalization.Numerical examples are given to validate the effectiveness of the presented optimization approach.展开更多
Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a not...Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a notable gap in understanding the intricate interplay between natural and socio-economic factors,especially in the context of spatial heterogeneity and nonlinear impacts of human-land interactions.To address this,our study evaluates the soil erosion vulnerability at a provincial scale,taking Hubei Province as a case study to explore the combined effects of natural and socio-economic factors.We developed an evaluation index system based on 15 indicators of soil erosion vulnerability:exposure,sensitivity,and adaptability.In addition,the combination weighting method was applied to determine index weights,and the spatial interaction was analyzed using spatial autocorrelation,geographical temporally weighted regression and geographical detector.The results showed an overall decreasing soil erosion intensity in Hubei Province during 2000 and 2020.The soil erosion vulnerability increased before 2000 and then.The areas with high soil erosion vulnerability were mainly confined in the central and southern regions of Hubei Province(Xiantao,Tianmen,Qianjiang and Ezhou)with obvious spatial aggregation that intensified over time.Natural factors(habitat quality index)had negative impacts on soil erosion vulnerability,whereas socio-economic factors(population density)showed substantial spatial variability in their influences.There was a positive correlation between soil erosion vulnerability and erosion intensity,with the correlation coefficients ranging from-0.41 and 0.93.The increase of slope was found to enhance the positive correlation between soil erosion vulnerability and intensity.展开更多
The combined finiteediscrete element method (FDEM) belongs to a family of methods of computationalmechanics of discontinua. The method is suitable for problems of discontinua, where particles aredeformable and can f...The combined finiteediscrete element method (FDEM) belongs to a family of methods of computationalmechanics of discontinua. The method is suitable for problems of discontinua, where particles aredeformable and can fracture or fragment. The applications of FDEM have spread over a number of disciplinesincluding rock mechanics, where problems like mining, mineral processing or rock blasting canbe solved by employing FDEM. In this work, a novel approach for the parallelization of two-dimensional(2D) FDEM aiming at clusters and desktop computers is developed. Dynamic domain decompositionbased parallelization solvers covering all aspects of FDEM have been developed. These have beenimplemented into the open source Y2D software package and have been tested on a PC cluster. Theoverall performance and scalability of the parallel code have been studied using numerical examples. Theresults obtained confirm the suitability of the parallel implementation for solving large scale problems. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
A combined shape and topology optimization algorithm based on isogeometric boundary element method for 3D acoustics is developed in this study.The key treatment involves using adjoint variable method in shape sensitiv...A combined shape and topology optimization algorithm based on isogeometric boundary element method for 3D acoustics is developed in this study.The key treatment involves using adjoint variable method in shape sensitivity analysis with respect to non-uniform rational basis splines control points,and in topology sensitivity analysis with respect to the artificial densities of sound absorption material.OpenMP tool in Fortran code is adopted to improve the efficiency of analysis.To consider the features and efficiencies of the two types of optimization methods,this study adopts a combined iteration scheme for the optimization process to investigate the simultaneous change of geometry shape and distribution of material to achieve better noise control.Numerical examples,such as sound barrier,simple tank,and BeTSSi submarine,are performed to validate the advantage of combined optimization in noise reduction,and to demonstrate the potential of the proposed method for engineering problems.展开更多
In this paper, the effectiveness, applicability and validity of chemicalephysical combined methods(CPCMs) for treatment of marine clay (MC) slurries were evaluated. The method CPCM1 combineschemical stabilization ...In this paper, the effectiveness, applicability and validity of chemicalephysical combined methods(CPCMs) for treatment of marine clay (MC) slurries were evaluated. The method CPCM1 combineschemical stabilization and vacuum preloading (VP), while CPCM2 is similar to CPCM1 but includes boththe application of surcharge and use of geo-bags to provide confinement during surcharge preloading.The key advantage of CPCM2 using geo-bags is that the surcharge can be immediately applied on thechemically stabilized slurries. Two types of geo-bags were investigated under simulated land filling anddyke conditions, respectively. The test results show that the shear strength (cu) of treated slurry byCPCM2 is generally much higher than that by CPCM1. Besides, the use of CPCM2 can significantly reducethe treatment time due to the short drainage paths created by geo-bags. Overall, CPCM2 allows fasterconsolidation and higher preloading that help to achieve higher mechanical properties of the stabilizedslurry. There are consistent relationships between cU and water content of slurries treated by CPCM2.Several important observations were also made based on comparisons of experimental data. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
Due to the long construction life,improper design methods,brittle material properties and poor construction techniques,most existing masonry structures do not perform well during earthquakes.The retrofitting method us...Due to the long construction life,improper design methods,brittle material properties and poor construction techniques,most existing masonry structures do not perform well during earthquakes.The retrofitting method using an external steel-meshed mortar layer is widely used to retrofit existing masonry buildings.Assessing the seismic performance of masonry walls reinforced by an external steel-meshed mortar layer reasonably and effectively is a difficult subject in the research field of masonry structures.Based on the combined finite-discrete elements method,the numerical models of retrofitted brick walls with four different masonry mortar strengths by an external mortar layer are established.The shear strength of mortar and the contact between the retrofitted mortar layer and the brick blocks are discussed in detail.The failure patterns and load-displacement curves of the retrofitted brick walls were obtained by applying low cycle reciprocating loads to the numerical model,and the bearing capacity and the failure mechanism of the retrofitted walls were obtained by comparing the failure patterns,ultimate bearing capacity,deformability and other aspects with the tests.This study provides a basis for improving the seismic strengthening design method of masonry structures and helps to better assess the seismic performance of masonry structures after retrofitting.展开更多
During the satellite pulse propagation and reception, the altimeter waveform is inevitably affected by noise. To reduce the noise level in Jason altimeter waveforms, we used singular spectrum analysis(SSA),empirical m...During the satellite pulse propagation and reception, the altimeter waveform is inevitably affected by noise. To reduce the noise level in Jason altimeter waveforms, we used singular spectrum analysis(SSA),empirical mode decomposition(EMD), and the combination of SSA and EMD to obtain the denoised waveforms. The advantages of the combined method were verified and the accuracy of the mean sea surface height(MSSH) model was improved. Comparing the denoising effect of the three methods, the results show that the signal-to-noise ratio(SNR), correlation coefficient and root-mean-square error are effectively improved by the combination of SSA and EMD. The sea surface heights(SSHs) were remeasured with a 50% threshold retracker of denoised waveforms, and the MSSH model of the Caspian Sea with a grid of 1’× 1’was established from the retracked SSHs of Jason-1/2/3. Taking the mean value of the four models as a control, it is found that the model calculated by the combined denoising method has the highest accuracy. This indicates that using the combined denoising method to reduce the noise level is beneficial to improve the accuracy of the MSSH model.展开更多
The novel (G'/G)-expansion method is a powerful and simple technique for finding exact traveling wave solutions to nonlinear evolution equations (NLEEs). In this article, we study explicit exact traveling wave sol...The novel (G'/G)-expansion method is a powerful and simple technique for finding exact traveling wave solutions to nonlinear evolution equations (NLEEs). In this article, we study explicit exact traveling wave solutions for the (1 + 1)-dimensional combined KdV-mKdV equation by using the novel (G'/G)-expansion method. Consequently, various traveling wave solutions patterns including solitary wave solutions, periodic solutions, and kinks are detected and exhibited.展开更多
A definition of combined phase center for horn feeds is given.Formulas of E-planeand H-plane combined phase center for conical horns and the corresponding Optimal model arepresented,and a fast optimization method for ...A definition of combined phase center for horn feeds is given.Formulas of E-planeand H-plane combined phase center for conical horns and the corresponding Optimal model arepresented,and a fast optimization method for solving this model is described.By using thismethod,the phase center of corrugated horn is discussed and calculated,and the variation of thephase center with distance and operating frequency is given.展开更多
Bond valence method illustrates the relation between valence and length of a particular bond type. This theory has been used to predict structure information, but the effect is very limited. In this paper, two indexes...Bond valence method illustrates the relation between valence and length of a particular bond type. This theory has been used to predict structure information, but the effect is very limited. In this paper, two indexes, i.e., global instability index(GII) and bond strain index(BSI), are adopted as a judgment of a search-match program for prediction. The results show that with GII and BSI combined as judgment, the predicted atom positions are very close to real ones. The mechanism and validity of this searching program are also discussed. The GII & BSI distribution contour map reveals that the predicted function is a reflection of exponential feature of bond valence formula. This combined searching method may be integrated with other structure-determination method, and may be helpful in refining and testifying light atom positions.展开更多
In this paper, a class of real-time parallel combined methods (RTPCM) of the digital simulation for a partitioned large system is presented. By means of combination of the parallelism across the system with the parall...In this paper, a class of real-time parallel combined methods (RTPCM) of the digital simulation for a partitioned large system is presented. By means of combination of the parallelism across the system with the parallelism across the method, stiff and non-stiff subsystems are solved in parallel on parallel computer by a parallel Rosenbrock method and a parallel RK method, respectively. Their construction, convergence and numerical stability are discussed, and the digitalsimulation experiments are conducted.展开更多
A class of modified parallel combined methods of real-time numerical simulation are presented for a stiff dynamic system. By combining the parallelism across the system with the parallelism across the method, and rela...A class of modified parallel combined methods of real-time numerical simulation are presented for a stiff dynamic system. By combining the parallelism across the system with the parallelism across the method, and relaxing the dependence of stage value computation on sampling time of input function, a class of modified real-time parallel combined methods are constructed. Stiff and nonstiff subsystems are solved in parallel on a parallel computer by a parallel Rosen-brock method and a parallel RK method, respectively. Their order conditions and convergences are discussed. The numerical simulation experiments show that this class of modified algorithms can get high speed and efficiency.展开更多
The Domain Decomposition Method(DDM) is a powerful approach to solving maily types of PDE's. DDM is especially suitable for massively Parallel computers. In the past, most research on DDM has focused on the domain...The Domain Decomposition Method(DDM) is a powerful approach to solving maily types of PDE's. DDM is especially suitable for massively Parallel computers. In the past, most research on DDM has focused on the domain splitting technique. In this paper. we focus our attention on use of a combination of techniques to solve each subproblem. The central question with DDM is that of how to doal with the pseodoboundary conditions. Here, we introduce a set of operators which act on the pseudo-boundaries in the solution process, referring to this new. procedure as the 'Generalized Domain Decomposition A.Jlethod(GDDM).' We have already obtained convergence factors for GDDM with certain classes of PDE's. These ctonvergence factors show that we can derive exact solutions of the whole problem for certain types of PDE's, and can get superior speed of convergence for other types.展开更多
Ultrasonic pulse velocity (UPV) and rebound hammer (RH) tests are often used for assessing the quality of concrete and estimation of its compressive strength. Several parameters influence this property of concrete as ...Ultrasonic pulse velocity (UPV) and rebound hammer (RH) tests are often used for assessing the quality of concrete and estimation of its compressive strength. Several parameters influence this property of concrete as the type and size of aggregates, cement content, the implementation of concrete, etc. To account for these factors, both of the two tests are combined and their measurements are calibrated with the results of mechanical tests on cylindrical specimens cast on site and on cores taken from the existing structure in work progress at the new-city Massinissa El-Khroub Constantine in Algeria. In this study;the two tests cited above have been used to determine the concrete quality by applying regression analysis models between compressive strength of in situ concrete on existing structure and the nondestructive tests values, the combined method is used, equations are derived using statistical analysis (simple and multiple regression) to estimate compressive strength of concrete on site and the reliability of the technique for prediction of the strength is discussed for this case study.展开更多
文摘The strength curves of lightweight aggregate concrete (LWAC) were tested based on detecting LWAC with density of 1 400-1 900 kg/m3 and LWAC with strength grade of LC15-LC50 by rebound method and ultrasonic-rebound combined method.The results show that the common measured strength curves tested by above two methods can not satisfy the required accuracy of LWAC strength test.In addition,specified compressive strength curves of testing LWAC by rebound method and ultrasonic-rebound combined method are obtained,respectively.
基金support of the project“State Grid Corporation Headquarters Science and Technology Program(5108-202299258A-1-0-ZB)”.
文摘To effectively quantify the impact of distributed photovoltaic(PV)access on the distribution network,this paper proposes a comprehensive evaluation method of distributed PV grid connection combining subjective and objective combination of assignment and technique for order preference by similarity to an ideal solution(TOPSIS)—rank sum ratio(RSR)(TOPSIS-RSR)method.Based on the traditional distribution network evaluation system,a comprehensive evaluation system has been constructed.It fully considers the new development requirements of distributed PV access on the environmental friendliness and absorptive capacity of the distribution grid and comprehensively reflects the impact of distributed PV grid connection.The analytic hierarchy process(AHP)was used to determine the subjective weights of the primary indicators,and the Spearman consistency test was combined to determine the weights of the secondary indicators based on three objective assignment methods.The subjective and objective combination weights of each assessment indicator were calculated through the principle of minimum entropy.Calculate the distance between the indicators to be evaluated and the positive and negative ideal solutions,the relative closeness ranking,and qualitative binning by TOPSIS-RSR method to obtain the comprehensive evaluation results of different scenarios.By setting up different PV grid-connected scenarios and utilizing the IEEE33 node simulation algorithm,the correctness and effectiveness of the proposed subject-object combination assignment and integrated assessment method are verified.
基金supported by Social Science Fund for Young Scholar of Ministry of Education of China(Grant No. 12YJC760092)Changzhou Key Digital Manufacturing Technology Laboratory Foundation of China(Grant No. CM2007301)
文摘As children mature, bike products for children in the market develop at the same time, and the conditions are frequently updated. Certain problems occur when using a bike, such as cycle overlapping, repeating function, and short life cycle, which go against the principles of energy conservation and the environmental protection intensive design concept. In this paper, a rational multi-function method of design through functional superposition, transformation, and technical implementation is proposed. An organic combination of frog-style scooter and children’s tricycle is developed using the multi-function method. From the ergonomic perspective, the paper elaborates on the body size of children aged 5 to 12 and effectively extracts data for a multi-function children’s bike, which can be used for gliding and riding. By inverting the body, parts can be interchanged between the handles and the pedals of the bike. Finally, the paper provides a detailed analysis of the components and structural design, body material, and processing technology of the bike. The study of Industrial Product Innovation Design provides an effective design method to solve the bicycle problems, extends the function problems, improves the product market situation, and enhances the energy saving feature while implementing intensive product development effectively at the same time.
基金supported by University of Kashan(Grant No.158426/5)
文摘Thermodynamic analysis was applied to study combined partial oxidation and carbon dioxide reforming of methane in view of carbon formation. The equilibrium calculations employing the Gibbs energy minimization were performed upon wide ranges of pressure (1-25 atm), temperature (600-1300 K), carbon dioxide to methane ratio (0-2) and oxygen to methane ratio (0-1). The thermodynamic results were compared with the results obtained over a Ru supported catalyst. The results revealed that by increasing the reaction pressure methane conversion decreased. Also it was found that the atmospheric pressure is the preferable pressure for both dry reforming and partial oxidation of methane and increasing the temperature caused increases in both activity of carbon and conversion of methane. The results clearly showed that the addition of O2 to the feed mixture could lead to a reduction of carbon deposition.
基金This project was supported by the National Natural Science Foundation of China (90405011).
文摘A novel control method for a general class of nonlinear systems using fuzzy logic systems (FLSs) is presertted. Indirect and direct methods are combined to design the adaptive fuzzy output feedback controller and a high-gain observer is used to estimate the derivatives of the system output. The closed-loop system is proven to be semiglobally uniformly ultimately bounded. In addition, it is shown that if the approximation accuracy of the fuzzy logic system is high enough and the observer gain is chosen sufficiently large, an arbitrarily small tracking error can be achieved. Simulation results verify the effectiveness of the newly designed scheme and the theoretical discussion.
基金supported by the National Natural Science Foundation of China (NSFC)under Grant Nos.12172350,11772322 and 11702238。
文摘We propose a combined shape and topology optimization approach in this research for 3D acoustics by using the isogeometric boundary element method with subdivision surfaces.The existing structural optimization methods mainly contain shape and topology schemes,with the former changing the surface geometric profile of the structure and the latter changing thematerial distribution topology or hole topology of the structure.In the present acoustic performance optimization,the coordinates of the control points in the subdivision surfaces fine mesh are selected as the shape design parameters of the structure,the artificial density of the sound absorbing material covered on the structure surface is set as the topology design parameter,and the combined topology and shape optimization approach is established through the sound field analysis of the subdivision surfaces boundary element method as a bridge.The topology and shape sensitivities of the approach are calculated using the adjoint variable method,which ensures the efficiency of the optimization.The geometric jaggedness and material distribution discontinuities that appear in the optimization process are overcome to a certain degree by the multiresolution method and solid isotropic material with penalization.Numerical examples are given to validate the effectiveness of the presented optimization approach.
基金supported by the National Natural Science Foundation of China(42377354)the Natural Science Foundation of Hubei province(2024AFB951)the Chunhui Plan Cooperation Research Project of the Chinese Ministry of Education(202200199).
文摘Soil erosion has been recognized as a critical environmental issue worldwide.While previous studies have primarily focused on watershed-scale soil erosion vulnerability from a natural factor perspective,there is a notable gap in understanding the intricate interplay between natural and socio-economic factors,especially in the context of spatial heterogeneity and nonlinear impacts of human-land interactions.To address this,our study evaluates the soil erosion vulnerability at a provincial scale,taking Hubei Province as a case study to explore the combined effects of natural and socio-economic factors.We developed an evaluation index system based on 15 indicators of soil erosion vulnerability:exposure,sensitivity,and adaptability.In addition,the combination weighting method was applied to determine index weights,and the spatial interaction was analyzed using spatial autocorrelation,geographical temporally weighted regression and geographical detector.The results showed an overall decreasing soil erosion intensity in Hubei Province during 2000 and 2020.The soil erosion vulnerability increased before 2000 and then.The areas with high soil erosion vulnerability were mainly confined in the central and southern regions of Hubei Province(Xiantao,Tianmen,Qianjiang and Ezhou)with obvious spatial aggregation that intensified over time.Natural factors(habitat quality index)had negative impacts on soil erosion vulnerability,whereas socio-economic factors(population density)showed substantial spatial variability in their influences.There was a positive correlation between soil erosion vulnerability and erosion intensity,with the correlation coefficients ranging from-0.41 and 0.93.The increase of slope was found to enhance the positive correlation between soil erosion vulnerability and intensity.
文摘The combined finiteediscrete element method (FDEM) belongs to a family of methods of computationalmechanics of discontinua. The method is suitable for problems of discontinua, where particles aredeformable and can fracture or fragment. The applications of FDEM have spread over a number of disciplinesincluding rock mechanics, where problems like mining, mineral processing or rock blasting canbe solved by employing FDEM. In this work, a novel approach for the parallelization of two-dimensional(2D) FDEM aiming at clusters and desktop computers is developed. Dynamic domain decompositionbased parallelization solvers covering all aspects of FDEM have been developed. These have beenimplemented into the open source Y2D software package and have been tested on a PC cluster. Theoverall performance and scalability of the parallel code have been studied using numerical examples. Theresults obtained confirm the suitability of the parallel implementation for solving large scale problems. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
基金This study was financially supported by the National Natural Science Foundation of China(NSFC)under Grant No.11772322the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No.XDB22040502.
文摘A combined shape and topology optimization algorithm based on isogeometric boundary element method for 3D acoustics is developed in this study.The key treatment involves using adjoint variable method in shape sensitivity analysis with respect to non-uniform rational basis splines control points,and in topology sensitivity analysis with respect to the artificial densities of sound absorption material.OpenMP tool in Fortran code is adopted to improve the efficiency of analysis.To consider the features and efficiencies of the two types of optimization methods,this study adopts a combined iteration scheme for the optimization process to investigate the simultaneous change of geometry shape and distribution of material to achieve better noise control.Numerical examples,such as sound barrier,simple tank,and BeTSSi submarine,are performed to validate the advantage of combined optimization in noise reduction,and to demonstrate the potential of the proposed method for engineering problems.
基金the R&D project, titled " Creating a Marine Clay Matrix with Incineration Bottom Ash (IBA) for Land Reclamation " (Wu et al., 2014), under the Innovation for Environmental Sustainability (IES) Fund from National Environment Agency (NEA) of Singapore (ETO/CF/3/1)
文摘In this paper, the effectiveness, applicability and validity of chemicalephysical combined methods(CPCMs) for treatment of marine clay (MC) slurries were evaluated. The method CPCM1 combineschemical stabilization and vacuum preloading (VP), while CPCM2 is similar to CPCM1 but includes boththe application of surcharge and use of geo-bags to provide confinement during surcharge preloading.The key advantage of CPCM2 using geo-bags is that the surcharge can be immediately applied on thechemically stabilized slurries. Two types of geo-bags were investigated under simulated land filling anddyke conditions, respectively. The test results show that the shear strength (cu) of treated slurry byCPCM2 is generally much higher than that by CPCM1. Besides, the use of CPCM2 can significantly reducethe treatment time due to the short drainage paths created by geo-bags. Overall, CPCM2 allows fasterconsolidation and higher preloading that help to achieve higher mechanical properties of the stabilizedslurry. There are consistent relationships between cU and water content of slurries treated by CPCM2.Several important observations were also made based on comparisons of experimental data. 2015 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
基金National Key Research and Development Program of China under Grant Nos. 2018YFC1504400 and 2019YFC1509301Natural Science Foundation of China under Grant No. 52078471Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant No. 19EEEVL0402
文摘Due to the long construction life,improper design methods,brittle material properties and poor construction techniques,most existing masonry structures do not perform well during earthquakes.The retrofitting method using an external steel-meshed mortar layer is widely used to retrofit existing masonry buildings.Assessing the seismic performance of masonry walls reinforced by an external steel-meshed mortar layer reasonably and effectively is a difficult subject in the research field of masonry structures.Based on the combined finite-discrete elements method,the numerical models of retrofitted brick walls with four different masonry mortar strengths by an external mortar layer are established.The shear strength of mortar and the contact between the retrofitted mortar layer and the brick blocks are discussed in detail.The failure patterns and load-displacement curves of the retrofitted brick walls were obtained by applying low cycle reciprocating loads to the numerical model,and the bearing capacity and the failure mechanism of the retrofitted walls were obtained by comparing the failure patterns,ultimate bearing capacity,deformability and other aspects with the tests.This study provides a basis for improving the seismic strengthening design method of masonry structures and helps to better assess the seismic performance of masonry structures after retrofitting.
基金We acknowledge the National Natural Science Foundation of China(grant number 41974013)for financial support.
文摘During the satellite pulse propagation and reception, the altimeter waveform is inevitably affected by noise. To reduce the noise level in Jason altimeter waveforms, we used singular spectrum analysis(SSA),empirical mode decomposition(EMD), and the combination of SSA and EMD to obtain the denoised waveforms. The advantages of the combined method were verified and the accuracy of the mean sea surface height(MSSH) model was improved. Comparing the denoising effect of the three methods, the results show that the signal-to-noise ratio(SNR), correlation coefficient and root-mean-square error are effectively improved by the combination of SSA and EMD. The sea surface heights(SSHs) were remeasured with a 50% threshold retracker of denoised waveforms, and the MSSH model of the Caspian Sea with a grid of 1’× 1’was established from the retracked SSHs of Jason-1/2/3. Taking the mean value of the four models as a control, it is found that the model calculated by the combined denoising method has the highest accuracy. This indicates that using the combined denoising method to reduce the noise level is beneficial to improve the accuracy of the MSSH model.
文摘The novel (G'/G)-expansion method is a powerful and simple technique for finding exact traveling wave solutions to nonlinear evolution equations (NLEEs). In this article, we study explicit exact traveling wave solutions for the (1 + 1)-dimensional combined KdV-mKdV equation by using the novel (G'/G)-expansion method. Consequently, various traveling wave solutions patterns including solitary wave solutions, periodic solutions, and kinks are detected and exhibited.
文摘A definition of combined phase center for horn feeds is given.Formulas of E-planeand H-plane combined phase center for conical horns and the corresponding Optimal model arepresented,and a fast optimization method for solving this model is described.By using thismethod,the phase center of corrugated horn is discussed and calculated,and the variation of thephase center with distance and operating frequency is given.
基金Project supported by the National Natural Science Foundation of China(Grant No.51272027)
文摘Bond valence method illustrates the relation between valence and length of a particular bond type. This theory has been used to predict structure information, but the effect is very limited. In this paper, two indexes, i.e., global instability index(GII) and bond strain index(BSI), are adopted as a judgment of a search-match program for prediction. The results show that with GII and BSI combined as judgment, the predicted atom positions are very close to real ones. The mechanism and validity of this searching program are also discussed. The GII & BSI distribution contour map reveals that the predicted function is a reflection of exponential feature of bond valence formula. This combined searching method may be integrated with other structure-determination method, and may be helpful in refining and testifying light atom positions.
文摘In this paper, a class of real-time parallel combined methods (RTPCM) of the digital simulation for a partitioned large system is presented. By means of combination of the parallelism across the system with the parallelism across the method, stiff and non-stiff subsystems are solved in parallel on parallel computer by a parallel Rosenbrock method and a parallel RK method, respectively. Their construction, convergence and numerical stability are discussed, and the digitalsimulation experiments are conducted.
基金This project was supported by the National Natural Science Foundation of China (19871080).
文摘A class of modified parallel combined methods of real-time numerical simulation are presented for a stiff dynamic system. By combining the parallelism across the system with the parallelism across the method, and relaxing the dependence of stage value computation on sampling time of input function, a class of modified real-time parallel combined methods are constructed. Stiff and nonstiff subsystems are solved in parallel on a parallel computer by a parallel Rosen-brock method and a parallel RK method, respectively. Their order conditions and convergences are discussed. The numerical simulation experiments show that this class of modified algorithms can get high speed and efficiency.
文摘The Domain Decomposition Method(DDM) is a powerful approach to solving maily types of PDE's. DDM is especially suitable for massively Parallel computers. In the past, most research on DDM has focused on the domain splitting technique. In this paper. we focus our attention on use of a combination of techniques to solve each subproblem. The central question with DDM is that of how to doal with the pseodoboundary conditions. Here, we introduce a set of operators which act on the pseudo-boundaries in the solution process, referring to this new. procedure as the 'Generalized Domain Decomposition A.Jlethod(GDDM).' We have already obtained convergence factors for GDDM with certain classes of PDE's. These ctonvergence factors show that we can derive exact solutions of the whole problem for certain types of PDE's, and can get superior speed of convergence for other types.
文摘Ultrasonic pulse velocity (UPV) and rebound hammer (RH) tests are often used for assessing the quality of concrete and estimation of its compressive strength. Several parameters influence this property of concrete as the type and size of aggregates, cement content, the implementation of concrete, etc. To account for these factors, both of the two tests are combined and their measurements are calibrated with the results of mechanical tests on cylindrical specimens cast on site and on cores taken from the existing structure in work progress at the new-city Massinissa El-Khroub Constantine in Algeria. In this study;the two tests cited above have been used to determine the concrete quality by applying regression analysis models between compressive strength of in situ concrete on existing structure and the nondestructive tests values, the combined method is used, equations are derived using statistical analysis (simple and multiple regression) to estimate compressive strength of concrete on site and the reliability of the technique for prediction of the strength is discussed for this case study.