In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heighte...In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heightened concerns regarding insulation failures. Meanwhile, the underlying mechanism behind discharge breakdown failure and nanofiller enhancement under high-frequency electrical stress remains unclear. An electric-thermal coupled discharge breakdown phase field model was constructed to study the evolution of the breakdown path in polyimide nanocomposite insulation subjected to high-frequency stress. The investigation focused on analyzing the effect of various factors, including frequency, temperature, and nanofiller shape, on the breakdown path of Polyimide(PI) composites. Additionally, it elucidated the enhancement mechanism of nano-modified composite insulation at the mesoscopic scale. The results indicated that with increasing frequency and temperature, the discharge breakdown path demonstrates accelerated development, accompanied by a gradual dominance of Joule heat energy. This enhancement is attributed to the dispersed electric field distribution and the hindering effect of the nanosheets. The research findings offer a theoretical foundation and methodological framework to inform the optimal design and performance management of new insulating materials utilized in high-frequency power equipment.展开更多
Purpose–This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.Design/methodology/approach–Vibration fatigue of railway bogie arising from the ...Purpose–This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.Design/methodology/approach–Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators.Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration.This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration,including a brief introduction of short-pitch irregularities,associated high frequency vibration in railway bogie,typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.Findings–The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms.The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components.The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure,and the fatigue crack usually initiates from the defect of the weld seam.Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities.The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment,and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.Originality/value–The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration.展开更多
This study evaluated the value of high-frequency ultrasonograpy for early detection of dorsal artery of foot in patients with type 2 diabetes mellitus (MD). Eighty subjects including 40 patients with type 2 MD (T2D...This study evaluated the value of high-frequency ultrasonograpy for early detection of dorsal artery of foot in patients with type 2 diabetes mellitus (MD). Eighty subjects including 40 patients with type 2 MD (T2DM group) and 40 healthy volunteers (NC group) were recruited. The intima-media thickness (IMT), the inner diameter and the perfusion of dorsal artery of foot were measured by using high-frequency ultrasonograpy. Meanwhile, the parameters of vascular elasticity, including stiffness parameter (]3), pressure-strain elastic modulus (Ep), arterial compliance (AC), augment index (AI), and pulse wave conducting velocity (PWV]3) were detected by means of echo-tracking technique. The results showed that no significant difference was found in the IMT, systolic diameter (Ds), diastolic diameter (Dd) and peak systolic velocity (PSV) between T2DM and NC groups. Ep and PWVβ were increased, and AC was decreased in T2DM group as compared with those in NC group with the differences being significant (P〈0.05 for all). There was no significant difference in β and AI between T2DM and NC groups. It was concluded that high-frequency ultra- sonography in combination with echo-tracking technique is sensitive and non-invasive, and can be used for early detection of sclerosis of the lower extremity artery in patients with type 2 MD.展开更多
Ultrahigh resolution synthetic aperture radar(SAR)imaging for ship targets is significant in SAR imaging,but it suffers from high frequency vibration of the platform,which will induce defocus into SAR imaging results....Ultrahigh resolution synthetic aperture radar(SAR)imaging for ship targets is significant in SAR imaging,but it suffers from high frequency vibration of the platform,which will induce defocus into SAR imaging results.In this paper,a novel compensation method based on the sinusoidal frequency modulation Fourier-Bessel transform(SFMFBT)is proposed,it can estimate the vibration errors,and the phase shift ambiguity can be avoided via extracting the time frequency ridge consequently.By constructing the corresponding compensation function and combined with the inverse SAR(ISAR)technique,well-focused imaging results can be obtained.The simulation imaging results of ship targets demonstrate the validity of the proposed approach.展开更多
BACKGROUND: It is a globally challenging problem to differentially diagnose biliary atresia (BA) from other disease processes causing infantile cholestatic jaundice. The high frequency ultrasonography (HUS) yields muc...BACKGROUND: It is a globally challenging problem to differentially diagnose biliary atresia (BA) from other disease processes causing infantile cholestatic jaundice. The high frequency ultrasonography (HUS) yields much improved spatial resolution and therefore, might show better image in BA diagnostic examination. The present study was to evaluate the HUS on the diagnosis of BA in infants with jaundice. METHODS: Fifty-one infants with neonatal jaundice were scanned with ultrasonography. Images included gallbladder, bile duct, right hepatic artery (RHA), portal vein (PV) and triangular cord (TC) sign, magnetic resonance imaging and additionally laboratory tests and histopathology reports were assessed. RESULTS: Twenty-three BA and 28 non-BA cases were con firmed. The sensitivity, specificity, and accuracy of HUS were 91.3%, 92.9%, and 92.2%, respectively. All of these indices were significantly higher than those of conventional ultrasonography (P【0.01) and MR cholangiopancreatography (P【0.05). The HUS features, included a positive TC sign, an increased RHA diameter and RHA-diameter to portal-vein-diameter ratio (RHA/PV) and abnormal gallbladder, were important in the diagnosis of BA. CONCLUSION: HUS provided better imaging of BA and should be considered as a primary modality in the differential diagnosis of infantile jaundice.展开更多
Inter-turn fault is a serious stator winding short-circuit fault of permanent magnet synchronous machine(PMSM). Once it occurs, it produces a huge short-circuit current that poses a great risk to the safe operation of...Inter-turn fault is a serious stator winding short-circuit fault of permanent magnet synchronous machine(PMSM). Once it occurs, it produces a huge short-circuit current that poses a great risk to the safe operation of PMSM. Thus, an inter-turn short-circuit fault(ITSCF) diagnosis method based on high frequency(HF) voltage residual is proposed in this paper with proper HF signal injection. First, the analytical models of PMSM after the ITSCF are deduced. Based on the model, the voltage residual at low frequency(LF) and HF can be obtained. It is revealed that the HF voltage residual has a stronger ITSCF detection capability compared to the LF voltage residual. To obtain optimal fault signature, a 3-phase symmetrical HF voltage is injected into the machine drive system, and the HF voltage residuals are extracted. The fault indicator is defined as the standard deviation of the 3-phase HF voltage residuals. The effectiveness of the proposed ITSCF diagnosis method is verified by experiments on a triple 3-phase PMSM. It is worth noting that no extra hardware equipment is required to implement the proposed method.展开更多
The influences of intense magnetic pinch effect caused by electromagnetic field with high frequency on discharge channel expansion and plasma configuration change are discussed. The change of Lorentz force exerting on...The influences of intense magnetic pinch effect caused by electromagnetic field with high frequency on discharge channel expansion and plasma configuration change are discussed. The change of Lorentz force exerting on charged particles in discharge channel is calculated under the electromagnetic field with high frequency. Through the theoretical analysis and experimental study, the forming process of discharge channel is conjectured. And it is considered that the changes of discharge channel, such as the decrease of diameter and increase of energy density, coming from the intense magnetic pinch effect in high frequency electromagnetic field, are the main reasons for a series of special phenomena on the machined surface in micro EDM.展开更多
A circuit configuration and a circuit topologic family of the novel forward mode AC/AC converters with high frequency link are presented. The circuit configuration is constituted of input cycloconverter, high frequenc...A circuit configuration and a circuit topologic family of the novel forward mode AC/AC converters with high frequency link are presented. The circuit configuration is constituted of input cycloconverter, high frequency transformer, output cycloconverter, input and output filters. The circuit topologic family includes eight circuit topologies, such as full-bridge-full-wave mode, etc. The bi-polarity phase-shifted control strategy and steady principles are thoroughly investigated. The output characteristics are obtained. By using the bi-polarity phase-shifted control strategy with phase-shifted control between the output cycloconveter and the input cycloconverter, commutation overlap period of the output cycloconverter, and polarity selection of the output filtering inductance current and the input voltage, the leakage inductance energy and the output filtering inductance current are naturally commutated, and surge voltage and surge current of the cycloconverters are overcome. The converters have such advantages as simple topology, two-stage power conversions(LFAC/HFAC/LFAC), bi-directional power flow, high frequency electrical isolation, good output waveforms, and strong ability to stabilize voltage. The converters lay key technical foundation on a new-type of regulated sinusoidal AC power supplies and electronic transformers. The correction and advancement of the converters are well verified by a principle test.展开更多
High frequency sky wave communication suffers from poor performance including poor link quality and low link success rate. To enhance performance, diversity technology is proposed in the high frequency communication n...High frequency sky wave communication suffers from poor performance including poor link quality and low link success rate. To enhance performance, diversity technology is proposed in the high frequency communication network(HFCN) in this paper.First, we present the benefits and the challenges by introducing diversity technology into the existing HFCN. Secondly, to exploit the benefits fully and overcome the challenges, we propose a system structure suitable for deploying diversity technology in HFCN in large scale,based on the cloud radio access network and software defined network. Moreover, we present a general structure for the real-time updating frequency management system that plays a more important role especially when resource consuming(e.g., frequency) diversity technology is deployed. Thirdly, we investigate the key techniques enabling diversity technology deployment. Finally, we point out the future research directions to help the HFCN with diversity work more efficiently and intelligently.展开更多
A new combined soft switching technique and a novel topology of aeronautical static inverter with high frequency pulse dc link are proposed in this paper, namely an electrical isolated converter can realize soft swi...A new combined soft switching technique and a novel topology of aeronautical static inverter with high frequency pulse dc link are proposed in this paper, namely an electrical isolated converter can realize soft switching of two stage cascade converters. It lays technical foundation for high power density, high efficiency and low cost aeronautical static inverter. The operation and design approach of this topology are carefully analyzed and studied. The validity of this topology is verified by simulation and test.展开更多
Ultrasonic communication in vertebrates is attracting increasing research interest.To determine if ultrasonic vocalization is common in birds,we recorded their vocalizations with ultrasound detectors in the Dongzhai N...Ultrasonic communication in vertebrates is attracting increasing research interest.To determine if ultrasonic vocalization is common in birds,we recorded their vocalizations with ultrasound detectors in the Dongzhai National Nature Reserve of Henan Province,China.We found varying degrees of high frequency components in the vocalizations of 14 species and in several of these species,the frequency of harmonics was up to the range of ultrasound.We suggest that more studies are required to determine whether the high frequency components in avian vocalizations have functions and what these functions are.In addition,the ability of birds to hear sounds in the high frequency range also requires re-examination.展开更多
A mathematical model was established for the temperature field developed during high frequency induction heating (HFIH) by Maxwell's equations. It required solving the coupled equations of the electromagnetic and t...A mathematical model was established for the temperature field developed during high frequency induction heating (HFIH) by Maxwell's equations. It required solving the coupled equations of the electromagnetic and temperature fields. The numerical simudation was performed using FEMLAB. The comparison of the calculations using the proposed model with experimental results showed a very good correlation. The effects of the heating parameters in high frequency induction such as the distance between the plate and the coil, the applied current, the frequency, and the turns of the coil on the temperature profiles developed in the plate were also discussed using the established model.展开更多
AIM:To evaluate the accuracy of axial length(AL)measurements obtained from immersion B-scan ultrasonography(immersion B-scan)for intraocular lens(IOL)power calculation in patients with high myopia and cataracts.METHOD...AIM:To evaluate the accuracy of axial length(AL)measurements obtained from immersion B-scan ultrasonography(immersion B-scan)for intraocular lens(IOL)power calculation in patients with high myopia and cataracts.METHODS:Immersion B-scan,contact A-scan ultrasonography(contact A-scan),and the IOLMaster were used to preoperatively measure the AL in 102 eyes from 102 patients who underwent phacoemulsification and IOL implantation.Patients were divided into two groups according to the AL:one containing patients with22 mm≤AL【26 mm(group A)and the other containing patients with AL≥26 mm(group B).The mean error(ME)was calculated from the difference between the AL measurement methods predicted refractive error and the actual postoperative refractive error.RESULTS:Ingroup A,ALs measured byimmersion Bscan(23.48±1.15)didn’t differ significantly from those measured by the IOLMaster(23.52±1.17)or from those by contact A-scan(23.38±1.20).In the same group,the standard deviation(SD)of the mean error(ME)of immersion B-scan(-0.090±0.397 D)didn’t differ significantly from those of IOLMaster(-0.095±0.411 D)and contact A-scan(-0.099±0.425 D).In group B,ALs measured by immersion B-scan(27.97±2.21 mm)didn’t differ significantly from those of the IOLMaster(27.86±2.18 mm),but longer than those measured by Contact A-scan(27.75±2.23 mm,P=0.009).In the same group,the standard deviation(SD)of the mean error(ME)of immersion B-scan(-0.635±0.157 D)didn’t differ significantly from those of the IOLMaster(-0.679±0.359 D),but differed significantly from those of contact A-scan(-0.953±1.713 D,P=0.028).CONCLUSION:ImmersionB-scanexhibitsmeasurement accuracy comparable to that of the IOLMaster,and is thus a good alternative in measuring AL in eyes with high myopia when the IOLMaster can’t be used,and it is more accurate than the contact A-scan.展开更多
Long-time cross correlation of ambient noise has been proved as a powerful tool to extract Green's function between two receivers. The study of composition of ambient noise is important for a better understanding of ...Long-time cross correlation of ambient noise has been proved as a powerful tool to extract Green's function between two receivers. The study of composition of ambient noise is important for a better understanding of this method. Previous studies confirm that ambient noise in the long period (3 s and longer) mostly consists of surface wave, and 0.25-2.5 s noise consists more of body waves. In this paper, we perform cross correlation processing at much higher frequency (30-70 Hz) using ambient noise recorded by a small aperture array. No surface waves emerge from noise correlation function (NCF), but weak P waves emerge. The absence of surface wave in NCF is not due to high attenuation since surface waves are strong from active source, therefore probably the high ambient noise mostly consists of body wave and lacks surface wave. Origin of such high frequency body waves in ambient noise remains to be studied.展开更多
As an important equipment for sea state remote sensing, high frequency surface wave radar (HFSWR) has received more and more attention. The conventional method for wave height inversion is based on the ratio of the ...As an important equipment for sea state remote sensing, high frequency surface wave radar (HFSWR) has received more and more attention. The conventional method for wave height inversion is based on the ratio of the integration of the second-order spectral continuum to that of the first-order region, where the strong external noise and the incorrect delineation of the first- and second-order Doppler spectral regions due to spectral aliasing are two major sources of errors in the wave height. To account for these factors, two more indices are introduced to the wave height estimation, i.e., the ratio of the maximum power of the second-or- der continuum to that of the Bragg spectral region (RSCB) and the ratio of the power of the second harmonic peak to that of the Bragg peak (RSHB). Both indices also have a strong correlation with the underlying wave height. On the basis of all these indices an empirical model is proposed to estimate the wave height. This method has been used in a three-months long experiment of the ocean state measuring and analyzing ra- dar, type S (OSMAR-S), which is a portable HFSWR with compact cross-loop/monopole receive antennas developed by Wuhan University since 2006. During the experiment in the Taiwan Strait, the significant wave height varied from 0 to 5 m. The significant wave heights estimated by the OSMAR-S correlate well with the data provided by the Oceanweather Inc. for comparison, with a correlation coefficient of 0.74 and a root mean square error (RMSE) of 0.77 m. The proposed method has made an effective improvement to the wave height estimation and thus a further step toward operational use of the OSMAR-S in the wave height extraction.展开更多
The effect of high frequency oscillatory ventilation(HFOV) at early stage on hemodynamic parameters, extravascular lung water(EVLW), lung capillary permeability, CC16 and s ICAM-1 in piglets with pulmonary or extr...The effect of high frequency oscillatory ventilation(HFOV) at early stage on hemodynamic parameters, extravascular lung water(EVLW), lung capillary permeability, CC16 and s ICAM-1 in piglets with pulmonary or extrapulmonary acute respiratory distress syndrome(ARDS) was explored. Central vein pressure(CVP) and pulse indicator continuous cardiac output(Pi CCO) were monitored in 12 anesthetized and intubated healthy piglets. Pulmonary ARDS(ARDSp) and extrapulmonary ARDS(ARDSexp) models were respectively established by lung lavage of saline solution and intravenous injection of oleic acid. Then the piglets received HFOV for 4 h. EVLW index(EVLWI), EVLW/intratroracic blood volume(ITBV) and pulmonary vascular permeability index(PVPI) were measured before and after modeling(T0 and T1), and T2(1 h), T3(2 h), T4(3 h) and T5(4 h) after HFOV. CC16 and s ICAM-1 were also detected at T1 and T5. Results showed at T1, T3, T4 and T5, EVLWI was increased more significantly in ARDSp group than in ARDSexp group(P〈0.05). The EVLWI in ARDSp group was increased at T1(P=0.008), and sustained continuously within 2 h(P=0.679, P=0.216), but decreased at T4(P=0.007) and T5(P=0.037). The EVLWI in ARDSexp group was also increased at T1(P=0.003), but significantly decreased at T3(P=0.002) and T4(P=0.019). PVPI was increased after modeling in both two groups(P=0.004, P=0.012), but there was no significant change within 4 h(T5) under HFOV in ARDSp group, while PVPI showed the increasing trends at first, then decreased in ARDSexp group after HFOV. The changes of EVLW/ITBV were similar to those of PVPI. No significant differences were found in ΔEVLWI(P=0.13), ΔPVPI(P=0.28) and ΔEVLW/ITBV between the two groups(P=0.63). The significant decreases in both CC16 and s ICAM-1 were found in both two groups 4 h after HFOV, but there was no significant difference between the two groups. It was concluded that EVLWI and lung capillary permeability were markedly increased in ARDSp and ARDSexp groups. EVLW could be decreased 4 h after the HFOV treatment. HFOV, EVLW/ITBV and PVPI were increased slightly at first, and then decreased in ARDSexp group, while in ARDSp group no significant difference was found after modeling. No significant differences were found in the decreases in EVLW and lung capillary permeability 4 h after HFOV.展开更多
Based on the quasi-harmonic analysis of 11 d vector ocean currents obtained from two high frequency sur- face wave radars located at Zhujiajian Island and Shengshan Island, the spatial distribution characteristics of ...Based on the quasi-harmonic analysis of 11 d vector ocean currents obtained from two high frequency sur- face wave radars located at Zhujiajian Island and Shengshan Island, the spatial distribution characteristics of surface tidal currents in the open sea area to the east of the Zhoushan Islands of Zhejiang Province, China are studied. The following conclusions are drawn from the analysis: the tidal current pattern in the open sea area to the east of Zhoushan Islands is primarily regular semidiurnal, which is significantly affected by the shallow water constituents. The directions of the major axes of tidal current ellipses of M2 lie approx- imately in the NW-SE direction. With the increasing of distance away from the coast, the directions of the tidal current ellipses gradually shift toward the E-W direction. The tidal currents are mainly reversing cur- rents. The spatial distribution of probable maximum current velocities decreases gradually from northeast to southwest which is basically in accordance with the spatial distribution of measured maximum current velocities. The residual currents near the coast are larger than those far away from the coast. The directions of the residual currents are basically north by east, and the angle to the due north increases gradually with the increasing distance away from the coast. The topography shows a certain impact on the spatial distri- bution of shallow water constituents, the rotation of tidal currents, the probable maximum currents and the residual currents.展开更多
This paper investigates the jamming sensing performance of the simultaneous transmit and receive based cognitive anti-jamming(SCAJ) receiver impaired by phase noise in local oscillators(LO) over fading channels. First...This paper investigates the jamming sensing performance of the simultaneous transmit and receive based cognitive anti-jamming(SCAJ) receiver impaired by phase noise in local oscillators(LO) over fading channels. Firstly, energy detection(ED)based on the jamming to noise ratio(JNR) of the high frequency bands SCAJ receiver with phase noise under different channels is analyzed. Then, the probabilities of jamming detection and false alarm in closed-form for the SCAJ receiver are derived. Finally,the modified Bayesian Cramer-Rao bound(BCRB) of jamming sensing for the SCAJ receiver is presented. Simulation results show that the performance degradation of the SCAJ system due to phase noise is more severe than that due to the channel fading in the circumstances where the signal bandwidth(BW) is kept a constant. Moreover, the signal BW has an effect on the phase noise in LO, and the jamming detection probability of the wideband SCAJ receiver with lower phase noise outperforms that of the narrowband receiver using the same center frequency. Furthermore,an accurate phase noise estimation and compensation scheme can improve the jamming detection capability of the SCAJ receiver in high frequency bands and approach to the upper bound.展开更多
Scanning ion conductance microscopy(SICM) is an emerging non-destructive surface topography characterization apparatus with nanoscale resolution. However, the low regulating frequency of probe in most existing modul...Scanning ion conductance microscopy(SICM) is an emerging non-destructive surface topography characterization apparatus with nanoscale resolution. However, the low regulating frequency of probe in most existing modulated current based SICM systems increases the system noise, and has difficulty in imaging sample surface with steep height changes. In order to enable SICM to have the capability of imaging surfaces with steep height changes, a novel probe that can be used in the modulated current based bopping mode is designed. The design relies on two piezoelectric ceramics with different travels to separate position adjustment and probe frequency regulation in the Z direction. To fiarther improve the resonant frequency of the probe, the material and the key dimensions for each component of the probe are optimized based on the multi-objective optimization method and the finite element analysis. The optimal design has a resonant frequency of above 10 kHz. To validate the rationality of the designed probe, microstructured grating samples are imaged using the homebuilt modulated current based SICM system. The experimental results indicate that the designed high frequency probe can effectively reduce the spike noise by 26% in the average number of spike noise. The proposed design provides a feasible solution for improving the imaging quality of the existing SICM systems which normally use ordinary probes with relatively low regulating frequency.展开更多
This paper presents an output feedback design approach based on the adaptive control scheme developed for nonlinearly parameterized systems,to achieve global output regulation for a class of nonlinear systems in outpu...This paper presents an output feedback design approach based on the adaptive control scheme developed for nonlinearly parameterized systems,to achieve global output regulation for a class of nonlinear systems in output feedback form.We solve the output regulation problem without the knowledge of the sign and the value of the high frequency gain a priori.It is not necessary to have both the limiting assumptions that the exogenous signal co and the unknown parameter ju belong to a prior known compact set and the high frequency gain has a determinate lower and upper bounds.The effectiveness of the proposed algorithm is shown with the help of an example.展开更多
基金supported in part by the National Key R&D Program of China (No.2021YFB2601404)Beijing Natural Science Foundation (No.3232053)National Natural Science Foundation of China (Nos.51929701 and 52127812)。
文摘In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heightened concerns regarding insulation failures. Meanwhile, the underlying mechanism behind discharge breakdown failure and nanofiller enhancement under high-frequency electrical stress remains unclear. An electric-thermal coupled discharge breakdown phase field model was constructed to study the evolution of the breakdown path in polyimide nanocomposite insulation subjected to high-frequency stress. The investigation focused on analyzing the effect of various factors, including frequency, temperature, and nanofiller shape, on the breakdown path of Polyimide(PI) composites. Additionally, it elucidated the enhancement mechanism of nano-modified composite insulation at the mesoscopic scale. The results indicated that with increasing frequency and temperature, the discharge breakdown path demonstrates accelerated development, accompanied by a gradual dominance of Joule heat energy. This enhancement is attributed to the dispersed electric field distribution and the hindering effect of the nanosheets. The research findings offer a theoretical foundation and methodological framework to inform the optimal design and performance management of new insulating materials utilized in high-frequency power equipment.
基金The author sincerely appreciates the help provided by the research team(Wheel/rail interaction,Vibration and Noise Research Team)and CRRC.In addition,this study has also been supported by Science and Technology Research Plan of China Railway General Corporation(No.P2019J002,N2022J009)China Association of Science and Technology Young Talent Support Project(No.2019QNRC001)+1 种基金National Natural Science Foundation(No.U1934203)Sichuan Science and Technology Program(No.2022NSFSC0469,2023NSFSC0374,2023YFH0049).
文摘Purpose–This review aims to give a critical view of the wheel/rail high frequency vibration-induced vibration fatigue in railway bogie.Design/methodology/approach–Vibration fatigue of railway bogie arising from the wheel/rail high frequency vibration has become the main concern of railway operators.Previous reviews usually focused on the formation mechanism of wheel/rail high frequency vibration.This paper thus gives a critical review of the vibration fatigue of railway bogie owing to the short-pitch irregularities-induced high frequency vibration,including a brief introduction of short-pitch irregularities,associated high frequency vibration in railway bogie,typical vibration fatigue failure cases of railway bogie and methodologies used for the assessment of vibration fatigue and research gaps.Findings–The results showed that the resulting excitation frequencies of short-pitch irregularity vary substantially due to different track types and formation mechanisms.The axle box-mounted components are much more vulnerable to vibration fatigue compared with other components.The wheel polygonal wear and rail corrugation-induced high frequency vibration is the main driving force of fatigue failure,and the fatigue crack usually initiates from the defect of the weld seam.Vibration spectrum for attachments of railway bogie defined in the standard underestimates the vibration level arising from the short-pitch irregularities.The current investigations on vibration fatigue mainly focus on the methods to improve the accuracy of fatigue damage assessment,and a systematical design method for vibration fatigue remains a huge gap to improve the survival probability when the rail vehicle is subjected to vibration fatigue.Originality/value–The research can facilitate the development of a new methodology to improve the fatigue life of railway vehicles when subjected to wheel/rail high frequency vibration.
文摘This study evaluated the value of high-frequency ultrasonograpy for early detection of dorsal artery of foot in patients with type 2 diabetes mellitus (MD). Eighty subjects including 40 patients with type 2 MD (T2DM group) and 40 healthy volunteers (NC group) were recruited. The intima-media thickness (IMT), the inner diameter and the perfusion of dorsal artery of foot were measured by using high-frequency ultrasonograpy. Meanwhile, the parameters of vascular elasticity, including stiffness parameter (]3), pressure-strain elastic modulus (Ep), arterial compliance (AC), augment index (AI), and pulse wave conducting velocity (PWV]3) were detected by means of echo-tracking technique. The results showed that no significant difference was found in the IMT, systolic diameter (Ds), diastolic diameter (Dd) and peak systolic velocity (PSV) between T2DM and NC groups. Ep and PWVβ were increased, and AC was decreased in T2DM group as compared with those in NC group with the differences being significant (P〈0.05 for all). There was no significant difference in β and AI between T2DM and NC groups. It was concluded that high-frequency ultra- sonography in combination with echo-tracking technique is sensitive and non-invasive, and can be used for early detection of sclerosis of the lower extremity artery in patients with type 2 MD.
基金supported by the National Natural Science Foundation of China(61871146)the Fundamental Research Funds for the Central Universities(FRFCU5710093720)。
文摘Ultrahigh resolution synthetic aperture radar(SAR)imaging for ship targets is significant in SAR imaging,but it suffers from high frequency vibration of the platform,which will induce defocus into SAR imaging results.In this paper,a novel compensation method based on the sinusoidal frequency modulation Fourier-Bessel transform(SFMFBT)is proposed,it can estimate the vibration errors,and the phase shift ambiguity can be avoided via extracting the time frequency ridge consequently.By constructing the corresponding compensation function and combined with the inverse SAR(ISAR)technique,well-focused imaging results can be obtained.The simulation imaging results of ship targets demonstrate the validity of the proposed approach.
基金supported by agrant from the New Technology and Service Project of Tongji Hospital(2008057)
文摘BACKGROUND: It is a globally challenging problem to differentially diagnose biliary atresia (BA) from other disease processes causing infantile cholestatic jaundice. The high frequency ultrasonography (HUS) yields much improved spatial resolution and therefore, might show better image in BA diagnostic examination. The present study was to evaluate the HUS on the diagnosis of BA in infants with jaundice. METHODS: Fifty-one infants with neonatal jaundice were scanned with ultrasonography. Images included gallbladder, bile duct, right hepatic artery (RHA), portal vein (PV) and triangular cord (TC) sign, magnetic resonance imaging and additionally laboratory tests and histopathology reports were assessed. RESULTS: Twenty-three BA and 28 non-BA cases were con firmed. The sensitivity, specificity, and accuracy of HUS were 91.3%, 92.9%, and 92.2%, respectively. All of these indices were significantly higher than those of conventional ultrasonography (P【0.01) and MR cholangiopancreatography (P【0.05). The HUS features, included a positive TC sign, an increased RHA diameter and RHA-diameter to portal-vein-diameter ratio (RHA/PV) and abnormal gallbladder, were important in the diagnosis of BA. CONCLUSION: HUS provided better imaging of BA and should be considered as a primary modality in the differential diagnosis of infantile jaundice.
基金supported in part by the Jiangsu Carbon Peak Carbon Neutralization Science and Technology Innovation Special Fund under Grant BE2022032-1National Natural Science Foundation of China under Grant 52277035, Grant 51937006 and Grant 51907028the “SEU Zhishan Young Scholars” Program of Southeast University。
文摘Inter-turn fault is a serious stator winding short-circuit fault of permanent magnet synchronous machine(PMSM). Once it occurs, it produces a huge short-circuit current that poses a great risk to the safe operation of PMSM. Thus, an inter-turn short-circuit fault(ITSCF) diagnosis method based on high frequency(HF) voltage residual is proposed in this paper with proper HF signal injection. First, the analytical models of PMSM after the ITSCF are deduced. Based on the model, the voltage residual at low frequency(LF) and HF can be obtained. It is revealed that the HF voltage residual has a stronger ITSCF detection capability compared to the LF voltage residual. To obtain optimal fault signature, a 3-phase symmetrical HF voltage is injected into the machine drive system, and the HF voltage residuals are extracted. The fault indicator is defined as the standard deviation of the 3-phase HF voltage residuals. The effectiveness of the proposed ITSCF diagnosis method is verified by experiments on a triple 3-phase PMSM. It is worth noting that no extra hardware equipment is required to implement the proposed method.
基金Supported by the National Natural Science Foundation of China(50635040)~~
文摘The influences of intense magnetic pinch effect caused by electromagnetic field with high frequency on discharge channel expansion and plasma configuration change are discussed. The change of Lorentz force exerting on charged particles in discharge channel is calculated under the electromagnetic field with high frequency. Through the theoretical analysis and experimental study, the forming process of discharge channel is conjectured. And it is considered that the changes of discharge channel, such as the decrease of diameter and increase of energy density, coming from the intense magnetic pinch effect in high frequency electromagnetic field, are the main reasons for a series of special phenomena on the machined surface in micro EDM.
文摘A circuit configuration and a circuit topologic family of the novel forward mode AC/AC converters with high frequency link are presented. The circuit configuration is constituted of input cycloconverter, high frequency transformer, output cycloconverter, input and output filters. The circuit topologic family includes eight circuit topologies, such as full-bridge-full-wave mode, etc. The bi-polarity phase-shifted control strategy and steady principles are thoroughly investigated. The output characteristics are obtained. By using the bi-polarity phase-shifted control strategy with phase-shifted control between the output cycloconveter and the input cycloconverter, commutation overlap period of the output cycloconverter, and polarity selection of the output filtering inductance current and the input voltage, the leakage inductance energy and the output filtering inductance current are naturally commutated, and surge voltage and surge current of the cycloconverters are overcome. The converters have such advantages as simple topology, two-stage power conversions(LFAC/HFAC/LFAC), bi-directional power flow, high frequency electrical isolation, good output waveforms, and strong ability to stabilize voltage. The converters lay key technical foundation on a new-type of regulated sinusoidal AC power supplies and electronic transformers. The correction and advancement of the converters are well verified by a principle test.
基金supported by the National Science Foundation of China under Grants No. 61801492 and No. 61601490a national major specific project governed by the national development and reform commission of China
文摘High frequency sky wave communication suffers from poor performance including poor link quality and low link success rate. To enhance performance, diversity technology is proposed in the high frequency communication network(HFCN) in this paper.First, we present the benefits and the challenges by introducing diversity technology into the existing HFCN. Secondly, to exploit the benefits fully and overcome the challenges, we propose a system structure suitable for deploying diversity technology in HFCN in large scale,based on the cloud radio access network and software defined network. Moreover, we present a general structure for the real-time updating frequency management system that plays a more important role especially when resource consuming(e.g., frequency) diversity technology is deployed. Thirdly, we investigate the key techniques enabling diversity technology deployment. Finally, we point out the future research directions to help the HFCN with diversity work more efficiently and intelligently.
文摘A new combined soft switching technique and a novel topology of aeronautical static inverter with high frequency pulse dc link are proposed in this paper, namely an electrical isolated converter can realize soft switching of two stage cascade converters. It lays technical foundation for high power density, high efficiency and low cost aeronautical static inverter. The operation and design approach of this topology are carefully analyzed and studied. The validity of this topology is verified by simulation and test.
基金supported by the National Basic Research Program of China(No.2007CB411606)
文摘Ultrasonic communication in vertebrates is attracting increasing research interest.To determine if ultrasonic vocalization is common in birds,we recorded their vocalizations with ultrasound detectors in the Dongzhai National Nature Reserve of Henan Province,China.We found varying degrees of high frequency components in the vocalizations of 14 species and in several of these species,the frequency of harmonics was up to the range of ultrasound.We suggest that more studies are required to determine whether the high frequency components in avian vocalizations have functions and what these functions are.In addition,the ability of birds to hear sounds in the high frequency range also requires re-examination.
文摘A mathematical model was established for the temperature field developed during high frequency induction heating (HFIH) by Maxwell's equations. It required solving the coupled equations of the electromagnetic and temperature fields. The numerical simudation was performed using FEMLAB. The comparison of the calculations using the proposed model with experimental results showed a very good correlation. The effects of the heating parameters in high frequency induction such as the distance between the plate and the coil, the applied current, the frequency, and the turns of the coil on the temperature profiles developed in the plate were also discussed using the established model.
基金Supported by National Key Basic Research Program of China(973 Program,No.2013CB967000)National Natural Science Foundation of China(No.81271052)
文摘AIM:To evaluate the accuracy of axial length(AL)measurements obtained from immersion B-scan ultrasonography(immersion B-scan)for intraocular lens(IOL)power calculation in patients with high myopia and cataracts.METHODS:Immersion B-scan,contact A-scan ultrasonography(contact A-scan),and the IOLMaster were used to preoperatively measure the AL in 102 eyes from 102 patients who underwent phacoemulsification and IOL implantation.Patients were divided into two groups according to the AL:one containing patients with22 mm≤AL【26 mm(group A)and the other containing patients with AL≥26 mm(group B).The mean error(ME)was calculated from the difference between the AL measurement methods predicted refractive error and the actual postoperative refractive error.RESULTS:Ingroup A,ALs measured byimmersion Bscan(23.48±1.15)didn’t differ significantly from those measured by the IOLMaster(23.52±1.17)or from those by contact A-scan(23.38±1.20).In the same group,the standard deviation(SD)of the mean error(ME)of immersion B-scan(-0.090±0.397 D)didn’t differ significantly from those of IOLMaster(-0.095±0.411 D)and contact A-scan(-0.099±0.425 D).In group B,ALs measured by immersion B-scan(27.97±2.21 mm)didn’t differ significantly from those of the IOLMaster(27.86±2.18 mm),but longer than those measured by Contact A-scan(27.75±2.23 mm,P=0.009).In the same group,the standard deviation(SD)of the mean error(ME)of immersion B-scan(-0.635±0.157 D)didn’t differ significantly from those of the IOLMaster(-0.679±0.359 D),but differed significantly from those of contact A-scan(-0.953±1.713 D,P=0.028).CONCLUSION:ImmersionB-scanexhibitsmeasurement accuracy comparable to that of the IOLMaster,and is thus a good alternative in measuring AL in eyes with high myopia when the IOLMaster can’t be used,and it is more accurate than the contact A-scan.
基金supported by Central Public-interest Scientific Institution Basal Research Fund (No. DQJB09B07)Knowledge Innovation Program of the Chinese Academy of Sciences under grant No. KZCX2-YW-116-1+1 种基金supported partially by National Natural Science Foundation of China (Nos. 40874095, 40730318 and 41004019)China Earthquake Administration Special Program Fund (Nos. 200808078 and 200808002)
文摘Long-time cross correlation of ambient noise has been proved as a powerful tool to extract Green's function between two receivers. The study of composition of ambient noise is important for a better understanding of this method. Previous studies confirm that ambient noise in the long period (3 s and longer) mostly consists of surface wave, and 0.25-2.5 s noise consists more of body waves. In this paper, we perform cross correlation processing at much higher frequency (30-70 Hz) using ambient noise recorded by a small aperture array. No surface waves emerge from noise correlation function (NCF), but weak P waves emerge. The absence of surface wave in NCF is not due to high attenuation since surface waves are strong from active source, therefore probably the high ambient noise mostly consists of body wave and lacks surface wave. Origin of such high frequency body waves in ambient noise remains to be studied.
基金The National Natural Science Foundation of China under contract No.61371198the National Special Program for Key Scientific Instrument and Equipment Development of China under contract No.2013YQ160793the Natural Science Foundation of Jiangsu Province of China under contract No.BK2012199
文摘As an important equipment for sea state remote sensing, high frequency surface wave radar (HFSWR) has received more and more attention. The conventional method for wave height inversion is based on the ratio of the integration of the second-order spectral continuum to that of the first-order region, where the strong external noise and the incorrect delineation of the first- and second-order Doppler spectral regions due to spectral aliasing are two major sources of errors in the wave height. To account for these factors, two more indices are introduced to the wave height estimation, i.e., the ratio of the maximum power of the second-or- der continuum to that of the Bragg spectral region (RSCB) and the ratio of the power of the second harmonic peak to that of the Bragg peak (RSHB). Both indices also have a strong correlation with the underlying wave height. On the basis of all these indices an empirical model is proposed to estimate the wave height. This method has been used in a three-months long experiment of the ocean state measuring and analyzing ra- dar, type S (OSMAR-S), which is a portable HFSWR with compact cross-loop/monopole receive antennas developed by Wuhan University since 2006. During the experiment in the Taiwan Strait, the significant wave height varied from 0 to 5 m. The significant wave heights estimated by the OSMAR-S correlate well with the data provided by the Oceanweather Inc. for comparison, with a correlation coefficient of 0.74 and a root mean square error (RMSE) of 0.77 m. The proposed method has made an effective improvement to the wave height estimation and thus a further step toward operational use of the OSMAR-S in the wave height extraction.
文摘The effect of high frequency oscillatory ventilation(HFOV) at early stage on hemodynamic parameters, extravascular lung water(EVLW), lung capillary permeability, CC16 and s ICAM-1 in piglets with pulmonary or extrapulmonary acute respiratory distress syndrome(ARDS) was explored. Central vein pressure(CVP) and pulse indicator continuous cardiac output(Pi CCO) were monitored in 12 anesthetized and intubated healthy piglets. Pulmonary ARDS(ARDSp) and extrapulmonary ARDS(ARDSexp) models were respectively established by lung lavage of saline solution and intravenous injection of oleic acid. Then the piglets received HFOV for 4 h. EVLW index(EVLWI), EVLW/intratroracic blood volume(ITBV) and pulmonary vascular permeability index(PVPI) were measured before and after modeling(T0 and T1), and T2(1 h), T3(2 h), T4(3 h) and T5(4 h) after HFOV. CC16 and s ICAM-1 were also detected at T1 and T5. Results showed at T1, T3, T4 and T5, EVLWI was increased more significantly in ARDSp group than in ARDSexp group(P〈0.05). The EVLWI in ARDSp group was increased at T1(P=0.008), and sustained continuously within 2 h(P=0.679, P=0.216), but decreased at T4(P=0.007) and T5(P=0.037). The EVLWI in ARDSexp group was also increased at T1(P=0.003), but significantly decreased at T3(P=0.002) and T4(P=0.019). PVPI was increased after modeling in both two groups(P=0.004, P=0.012), but there was no significant change within 4 h(T5) under HFOV in ARDSp group, while PVPI showed the increasing trends at first, then decreased in ARDSexp group after HFOV. The changes of EVLW/ITBV were similar to those of PVPI. No significant differences were found in ΔEVLWI(P=0.13), ΔPVPI(P=0.28) and ΔEVLW/ITBV between the two groups(P=0.63). The significant decreases in both CC16 and s ICAM-1 were found in both two groups 4 h after HFOV, but there was no significant difference between the two groups. It was concluded that EVLWI and lung capillary permeability were markedly increased in ARDSp and ARDSexp groups. EVLW could be decreased 4 h after the HFOV treatment. HFOV, EVLW/ITBV and PVPI were increased slightly at first, and then decreased in ARDSexp group, while in ARDSp group no significant difference was found after modeling. No significant differences were found in the decreases in EVLW and lung capillary permeability 4 h after HFOV.
基金The National High Technology Research and Development Program of China(863 Program)under contract No.2012AA091701the Fundamental Research Fund for the Central Universities of China under contract No.2012212020211
文摘Based on the quasi-harmonic analysis of 11 d vector ocean currents obtained from two high frequency sur- face wave radars located at Zhujiajian Island and Shengshan Island, the spatial distribution characteristics of surface tidal currents in the open sea area to the east of the Zhoushan Islands of Zhejiang Province, China are studied. The following conclusions are drawn from the analysis: the tidal current pattern in the open sea area to the east of Zhoushan Islands is primarily regular semidiurnal, which is significantly affected by the shallow water constituents. The directions of the major axes of tidal current ellipses of M2 lie approx- imately in the NW-SE direction. With the increasing of distance away from the coast, the directions of the tidal current ellipses gradually shift toward the E-W direction. The tidal currents are mainly reversing cur- rents. The spatial distribution of probable maximum current velocities decreases gradually from northeast to southwest which is basically in accordance with the spatial distribution of measured maximum current velocities. The residual currents near the coast are larger than those far away from the coast. The directions of the residual currents are basically north by east, and the angle to the due north increases gradually with the increasing distance away from the coast. The topography shows a certain impact on the spatial distri- bution of shallow water constituents, the rotation of tidal currents, the probable maximum currents and the residual currents.
基金supported by the Program of the Aeronautical Science Foundation of China(2013ZC15003)
文摘This paper investigates the jamming sensing performance of the simultaneous transmit and receive based cognitive anti-jamming(SCAJ) receiver impaired by phase noise in local oscillators(LO) over fading channels. Firstly, energy detection(ED)based on the jamming to noise ratio(JNR) of the high frequency bands SCAJ receiver with phase noise under different channels is analyzed. Then, the probabilities of jamming detection and false alarm in closed-form for the SCAJ receiver are derived. Finally,the modified Bayesian Cramer-Rao bound(BCRB) of jamming sensing for the SCAJ receiver is presented. Simulation results show that the performance degradation of the SCAJ system due to phase noise is more severe than that due to the channel fading in the circumstances where the signal bandwidth(BW) is kept a constant. Moreover, the signal BW has an effect on the phase noise in LO, and the jamming detection probability of the wideband SCAJ receiver with lower phase noise outperforms that of the narrowband receiver using the same center frequency. Furthermore,an accurate phase noise estimation and compensation scheme can improve the jamming detection capability of the SCAJ receiver in high frequency bands and approach to the upper bound.
基金Supported by National Natural Science Foundation of China(Grant No.51375363)
文摘Scanning ion conductance microscopy(SICM) is an emerging non-destructive surface topography characterization apparatus with nanoscale resolution. However, the low regulating frequency of probe in most existing modulated current based SICM systems increases the system noise, and has difficulty in imaging sample surface with steep height changes. In order to enable SICM to have the capability of imaging surfaces with steep height changes, a novel probe that can be used in the modulated current based bopping mode is designed. The design relies on two piezoelectric ceramics with different travels to separate position adjustment and probe frequency regulation in the Z direction. To fiarther improve the resonant frequency of the probe, the material and the key dimensions for each component of the probe are optimized based on the multi-objective optimization method and the finite element analysis. The optimal design has a resonant frequency of above 10 kHz. To validate the rationality of the designed probe, microstructured grating samples are imaged using the homebuilt modulated current based SICM system. The experimental results indicate that the designed high frequency probe can effectively reduce the spike noise by 26% in the average number of spike noise. The proposed design provides a feasible solution for improving the imaging quality of the existing SICM systems which normally use ordinary probes with relatively low regulating frequency.
基金supported by the National Natural Science Foundation of China(61663030,61663032)the Natural Science Foundation of Jiangxi Province(20142BAB207021)+4 种基金the Foundation of Jiangxi Educational Committee(GJJ150753)the Open Fund of Key Laboratory of Image Processing and Pattern Recognition of Jiangxi Province(Nanchang Hangkong University)(TX201404003)the Key Laboratory of Nondestructive Testing(Nanchang Hangkong University)Ministry of Education(ZD29529005)the Reform Project of Degree and Postgraduate Education in Jiangxi(JXYJG-2017-131)
文摘This paper presents an output feedback design approach based on the adaptive control scheme developed for nonlinearly parameterized systems,to achieve global output regulation for a class of nonlinear systems in output feedback form.We solve the output regulation problem without the knowledge of the sign and the value of the high frequency gain a priori.It is not necessary to have both the limiting assumptions that the exogenous signal co and the unknown parameter ju belong to a prior known compact set and the high frequency gain has a determinate lower and upper bounds.The effectiveness of the proposed algorithm is shown with the help of an example.