The fluorescently labelled polymers including pyrene-labelled polystyrene(PyPS) and pyrene-labelled poly(methyl methacrylate)(PyPMMA) with narrow molecular weight distributions were synthesized by the atom transfer ra...The fluorescently labelled polymers including pyrene-labelled polystyrene(PyPS) and pyrene-labelled poly(methyl methacrylate)(PyPMMA) with narrow molecular weight distributions were synthesized by the atom transfer radical copolymerization(ATRCP) of styrene or methyl methacrylate with 1-pyrenemethyl methacrylate(PyMMA). The ultrathin PyPS and PyPMMA films with the thickness ranging from 30 nm to 400 nm supported on the quartz slides were prepared by spin-coating. The fluorescent quantum yield(QY) of the pyrene probe in the ultrathin polymer films was investigated by the photoluminescence spectrometer using an integrating sphere detector. The QY decreased with the reduction of film thickness in the sub-200 nm range.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.21174167 and 51573212)the Natural Science Foundation of Guangdong Province(Nos.S2013030013474 and 2014A030313178)
文摘The fluorescently labelled polymers including pyrene-labelled polystyrene(PyPS) and pyrene-labelled poly(methyl methacrylate)(PyPMMA) with narrow molecular weight distributions were synthesized by the atom transfer radical copolymerization(ATRCP) of styrene or methyl methacrylate with 1-pyrenemethyl methacrylate(PyMMA). The ultrathin PyPS and PyPMMA films with the thickness ranging from 30 nm to 400 nm supported on the quartz slides were prepared by spin-coating. The fluorescent quantum yield(QY) of the pyrene probe in the ultrathin polymer films was investigated by the photoluminescence spectrometer using an integrating sphere detector. The QY decreased with the reduction of film thickness in the sub-200 nm range.