Jupiter's aurora exhibits three distinct regions: the satellite footprint emissions, the main oval emissions and all polar emissions. As the case of the Earth, the auroral morphology contains both qualitative and qu...Jupiter's aurora exhibits three distinct regions: the satellite footprint emissions, the main oval emissions and all polar emissions. As the case of the Earth, the auroral morphology contains both qualitative and quantitative clues about magnetospheric structure and dynamics. We map along the magnetic field lines to the equatorial plane to track the plasma resources of the main oval in an equilibrium model of Jupiter's magnetosphere. The footprints of the satellites are good references to help us to check the mapping. We find out that the plasma of oval emissions originates from the equatorial plane with a distance of~22.0RJ, which is closer to the Jupiter than 30RJ given by the VIP4 model. However the difference does not deny the conclusion that the upward Birkeland currents produce the oval emissions.展开更多
极光卵极光强度的空间分布是太阳风-磁层-电离层能量耦合过程的重要表现,并且随着空间环境参数和地磁指数的变化而变化,是空间天气的重要指示器.建立合适的极光强度模型对亚暴的预测以及磁层动力学的研究具有重要意义.本文基于Polar卫...极光卵极光强度的空间分布是太阳风-磁层-电离层能量耦合过程的重要表现,并且随着空间环境参数和地磁指数的变化而变化,是空间天气的重要指示器.建立合适的极光强度模型对亚暴的预测以及磁层动力学的研究具有重要意义.本文基于Polar卫星的紫外极光成像仪(Ultraviolet Imager,UVI)数据,采用两种不同的极光强度表征方法,即曲线拟合方法(从UVI图像数据中提取极光强度沿磁余纬方向上的曲线特征,Curve Feature along the Magnetic Co-latitude Direction of the Auroral Intensity,CFMCD_AI)和网格化方法(从UVI图像数据中提取极光强度的网格化特征,Gridding Feature of the Auroral Intensity,GF_AI),来构造极区极光强度特征数据库.然后,利用该数据库,采用广义回归神经网络(Generalized Regression Neural Network,GRNN)构建了以行星际/太阳风参数(行星际磁场三分量、太阳风速度和密度)和地磁指数(AE指数)为输入参数的两种极光强度预测模型(GRNN_CFMCD_AI模型和GRNN_GF_AI模型).利用图像质量评价指数结构相似度(structure similarity,SSIM)作为极光强度模型预测结果和对应的UVI图像的相似性评价标准(完全相似为1,不相似为0,一般认为SSIM大于0.5是具有较好的相似性),对两种极光强度模型进行了性能评价.结果显示,GRNN_GF_AI模型预测结果对应的SSIM值范围为0.36~0.77,均值为0.54,性能优于GRNN_CFMCD_AI模型的.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 40474063.
文摘Jupiter's aurora exhibits three distinct regions: the satellite footprint emissions, the main oval emissions and all polar emissions. As the case of the Earth, the auroral morphology contains both qualitative and quantitative clues about magnetospheric structure and dynamics. We map along the magnetic field lines to the equatorial plane to track the plasma resources of the main oval in an equilibrium model of Jupiter's magnetosphere. The footprints of the satellites are good references to help us to check the mapping. We find out that the plasma of oval emissions originates from the equatorial plane with a distance of~22.0RJ, which is closer to the Jupiter than 30RJ given by the VIP4 model. However the difference does not deny the conclusion that the upward Birkeland currents produce the oval emissions.
文摘极光卵极光强度的空间分布是太阳风-磁层-电离层能量耦合过程的重要表现,并且随着空间环境参数和地磁指数的变化而变化,是空间天气的重要指示器.建立合适的极光强度模型对亚暴的预测以及磁层动力学的研究具有重要意义.本文基于Polar卫星的紫外极光成像仪(Ultraviolet Imager,UVI)数据,采用两种不同的极光强度表征方法,即曲线拟合方法(从UVI图像数据中提取极光强度沿磁余纬方向上的曲线特征,Curve Feature along the Magnetic Co-latitude Direction of the Auroral Intensity,CFMCD_AI)和网格化方法(从UVI图像数据中提取极光强度的网格化特征,Gridding Feature of the Auroral Intensity,GF_AI),来构造极区极光强度特征数据库.然后,利用该数据库,采用广义回归神经网络(Generalized Regression Neural Network,GRNN)构建了以行星际/太阳风参数(行星际磁场三分量、太阳风速度和密度)和地磁指数(AE指数)为输入参数的两种极光强度预测模型(GRNN_CFMCD_AI模型和GRNN_GF_AI模型).利用图像质量评价指数结构相似度(structure similarity,SSIM)作为极光强度模型预测结果和对应的UVI图像的相似性评价标准(完全相似为1,不相似为0,一般认为SSIM大于0.5是具有较好的相似性),对两种极光强度模型进行了性能评价.结果显示,GRNN_GF_AI模型预测结果对应的SSIM值范围为0.36~0.77,均值为0.54,性能优于GRNN_CFMCD_AI模型的.