Methanol/TiO2(110) is a model system in the surface science study of photocatalysis where methanol is taken as a hole capture. However, the highest occupied molecular orbital of adsorbed methanol lies below the vale...Methanol/TiO2(110) is a model system in the surface science study of photocatalysis where methanol is taken as a hole capture. However, the highest occupied molecular orbital of adsorbed methanol lies below the valence band maximum of TiO2, preventing the hole transfer. To study the level alignment of this system, electronic structure of methanol covered TiO2(110) surface has been measured by ultraviolet photoelectron spectroscopy and the molecular orbitals of adsorbed methanol have been clearly identified. The results indicate the weak interaction between methanol and TiO2 substrate. The static electronic structure also suggests the mismatch of the energy levels. These static experiments have been performed without band gap excitation which is the prerequisite of a photocatalytie process. Future study of the transient electronic structure using time-resolved UPS has also been discussed.展开更多
HeⅠ photoelectron spectrum of isotopic 18O2 molecules has been firstly recorded on a double-chambers UPS machine Ⅱ which was built specifically to detect transient species. In comparison with UPS results of oxygen m...HeⅠ photoelectron spectrum of isotopic 18O2 molecules has been firstly recorded on a double-chambers UPS machine Ⅱ which was built specifically to detect transient species. In comparison with UPS results of oxygen molecles 16O2 it is found that the reduction of adiabatic ionization potentials IPs, the decresae of vibrational intervals and the change of intensity of vibrational components on each ionic state of isotopic 18O2molecules obviously appear on the UPS spectrum.展开更多
文摘Methanol/TiO2(110) is a model system in the surface science study of photocatalysis where methanol is taken as a hole capture. However, the highest occupied molecular orbital of adsorbed methanol lies below the valence band maximum of TiO2, preventing the hole transfer. To study the level alignment of this system, electronic structure of methanol covered TiO2(110) surface has been measured by ultraviolet photoelectron spectroscopy and the molecular orbitals of adsorbed methanol have been clearly identified. The results indicate the weak interaction between methanol and TiO2 substrate. The static electronic structure also suggests the mismatch of the energy levels. These static experiments have been performed without band gap excitation which is the prerequisite of a photocatalytie process. Future study of the transient electronic structure using time-resolved UPS has also been discussed.
文摘HeⅠ photoelectron spectrum of isotopic 18O2 molecules has been firstly recorded on a double-chambers UPS machine Ⅱ which was built specifically to detect transient species. In comparison with UPS results of oxygen molecles 16O2 it is found that the reduction of adiabatic ionization potentials IPs, the decresae of vibrational intervals and the change of intensity of vibrational components on each ionic state of isotopic 18O2molecules obviously appear on the UPS spectrum.