期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
显著性背景感知的多尺度红外行人检测方法 被引量:5
1
作者 赵斌 王春平 付强 《电子与信息学报》 EI CSCD 北大核心 2020年第10期2524-2532,共9页
超大视场(U-FOV)红外成像系统探测范围大、不受光照限制,但存在尺度多样、小目标丰富的特点。为此该文提出一种具备背景感知能力的多尺度红外行人检测方法,在提高小目标检测性能的同时,减少冗余计算。首先,构建了4尺度的特征金字塔网络... 超大视场(U-FOV)红外成像系统探测范围大、不受光照限制,但存在尺度多样、小目标丰富的特点。为此该文提出一种具备背景感知能力的多尺度红外行人检测方法,在提高小目标检测性能的同时,减少冗余计算。首先,构建了4尺度的特征金字塔网络分别独立预测目标,补充高分辨率细节特征。其次,在特征金字塔结构的横向连接中融入注意力模块,产生显著性特征,抑制不相关区域的特征响应、突出图像局部目标特征。最后,在显著性系数的基础上构建了锚框掩膜生成子网络,约束锚框位置,排除平坦背景,提高处理效率。实验结果表明,显著性生成子网络仅增加5.94%的处理时间,具备轻量特性;超大视场(U-FOV)红外行人数据集上的识别准确率达到了93.20%,比YOLOv3高了26.49%;锚框约束策略能节约处理时间18.05%。重构模型具有轻量性和高准确性,适合于检测超大视场中的多尺度红外目标。 展开更多
关键词 红外行人检测 超大视场 卷积神经网络 背景感知 多尺度
下载PDF
基于深度注意力机制的多尺度红外行人检测 被引量:22
2
作者 赵斌 王春平 +1 位作者 付强 陈一超 《光学学报》 EI CAS CSCD 北大核心 2020年第5期41-52,共12页
针对多尺度目标检测问题,提出一种基于深度注意力机制的多尺度红外行人检测方法。首先,选取较为轻量级的Darknet53作为深度卷积特征提取的主干网络,设计四尺度的特征金字塔网络负责目标的定位和分类,通过引入更低层高分辨率的特征图来... 针对多尺度目标检测问题,提出一种基于深度注意力机制的多尺度红外行人检测方法。首先,选取较为轻量级的Darknet53作为深度卷积特征提取的主干网络,设计四尺度的特征金字塔网络负责目标的定位和分类,通过引入更低层高分辨率的特征图来改善对小尺度行人目标的检测性能。其次,利用注意力模块替代特征金字塔网络中传统的上采样模块,生成基于卷积特征的局部显著图,可以有效抑制不相关区域的特征响应,突出图像局部特性。最后,利用Caltech行人数据集和U-FOV红外行人数据集进行两次迁移训练,以提高模型的泛化能力,丰富行人的样本特征。实验结果表明,所提方法在U-FOV数据集上的识别平均准确率达到了93.45%,比YOLOv3高26.74个百分点,能检测到的最小行人像素为6×13。在LTIR数据集上的定性实验结果验证,所提模型具有良好的泛化能力,适用于多尺度红外行人的检测。 展开更多
关键词 探测器 红外行人检测 卷积神经网络 超大视场 特征金字塔网络 注意力机制
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部