This paper presents an original probabilistic model of a hybrid underwater wireless sensor network(UWSN),which includes a network of stationary sensors placed on the seabed and a mobile gateway.The mobile gateway is a...This paper presents an original probabilistic model of a hybrid underwater wireless sensor network(UWSN),which includes a network of stationary sensors placed on the seabed and a mobile gateway.The mobile gateway is a wave glider that collects data from the underwater network segment and retransmits it to the processing center.The authors consider the joint problem of optimal localization of stationary network nodes and the corresponding model for bypassing reference nodes by a wave glider.The optimality of the network is evaluated according to the criteria of energy efficiency and reliability.The influence of various physical and technical parameters of the network on its energy efficiency and on the lifespan of sensor nodes is analyzed.The analysis is carried out for networks of various scales,depending on the localization of stationary nodes and the model of bypassing the network with a wave glider.As a model example,the simulation of the functional characteristics of the network for a given size of the water area is carried out.It is shown that in the case of a medium-sized water area,the model of“bypassing the perimeter”by a wave glider is practically feasible,energy efficient and reliable for hourly data measurements.In the case of a large water area,the cluster bypass model becomes more efficient.展开更多
The underwater wireless sensor network(UWSN) has the features of mobility by drifting,less beacon nodes,longer time for localization and more energy consumption than the terrestrial sensor networks,which makes it more...The underwater wireless sensor network(UWSN) has the features of mobility by drifting,less beacon nodes,longer time for localization and more energy consumption than the terrestrial sensor networks,which makes it more difficult to locate the nodes in marine environment.Aiming at the characteristics of UWSN,a kind of cooperative range-free localization method based on weighted centroid localization(WCL) algorithm for three-dimensional UWSN is proposed.The algorithm assigns the cooperative weights for the beacon nodes according to the received acoustic signal strength,and uses the located unknown nodes as the new beacon nodes to locate the other unknown nodes,so a fast localization can be achieved for the whole sensor networks.Simulation results indicate this method has higher localization accuracy than the centroid localization algorithm,and it needs less beacon nodes and achieves higher rate of effective localization.展开更多
This work proposes a geographic routing protocol for UWSNs based on the construction of a 3D virtual grid structure, called Void-Avoidance Grid-based Multipath Position-based Routing (VA-GMPR). It consists of two main...This work proposes a geographic routing protocol for UWSNs based on the construction of a 3D virtual grid structure, called Void-Avoidance Grid-based Multipath Position-based Routing (VA-GMPR). It consists of two main components, the multipath routing scheme and the grid-based void avoidance (GVA) mechanism for handling routing holes. The multipath routing scheme adopts node-disjoint routes from the source to the sink in order to enhance network reliability and load balancing. While the GVA mechanism handles the problem of holes in 3D virtual grid structure based on three techniques: Hole bypass, path diversion, and path backtracking. The performance evaluation of the VA-GMPR protocol was compared to a recently proposed grid-based routing protocol for UWSNs, called Energy-efficient Multipath Geographic Grid-based Routing (EMGGR). The results showed that the VA-GMPR protocol outperformed the EMGGR protocol in terms of packet delivery ratio, and end-to end-delay. However, the results also showed that the VA-GMPR protocol exhibited higher energy consumption compared to EMGGR.展开更多
With the rapid developments of commercial demands,a majority of advanced researches have been investigated for the applications of underwater wireless sensor(WSN)networks.Recently optical communication has...With the rapid developments of commercial demands,a majority of advanced researches have been investigated for the applications of underwater wireless sensor(WSN)networks.Recently optical communication has been considered for underwater wireless sensor network.An experimental set-up for testing optical communication underwater has been provided and designed in present papers to maximize the energy coupled from these displacements to the transduction mechanism that converts the mechanical energy into electrical.The true case has been considered by measuring diffuse attenuation coefficients in different seas.One stand out potential optical communication method,Visible Light Communication(VLC)has been talked and several communication methods are compared from many points of view,for example attenuation in salt water.The evaluation of modulation techniques for underwater wireless optical communications has been displayed,and further how the data collection and storage with an underwater WSN is introduced.In this paper current researches for an(UWSN)based on optical communication are studied,in particular the potential VLC method and comparisons of VLC with other optical communication approaches.Underwater challenges would be analyzed by comparing a sort of communication methods,applied in underwater.Future work will be developed at last.展开更多
基金The research was partially funded by the Ministry of Science and Higher Education of the Russian Federation as part of World-class Research Center program:Advanced Digital Technologies(Contract No.075-15-2020-903 dated 16.11.2020).
文摘This paper presents an original probabilistic model of a hybrid underwater wireless sensor network(UWSN),which includes a network of stationary sensors placed on the seabed and a mobile gateway.The mobile gateway is a wave glider that collects data from the underwater network segment and retransmits it to the processing center.The authors consider the joint problem of optimal localization of stationary network nodes and the corresponding model for bypassing reference nodes by a wave glider.The optimality of the network is evaluated according to the criteria of energy efficiency and reliability.The influence of various physical and technical parameters of the network on its energy efficiency and on the lifespan of sensor nodes is analyzed.The analysis is carried out for networks of various scales,depending on the localization of stationary nodes and the model of bypassing the network with a wave glider.As a model example,the simulation of the functional characteristics of the network for a given size of the water area is carried out.It is shown that in the case of a medium-sized water area,the model of“bypassing the perimeter”by a wave glider is practically feasible,energy efficient and reliable for hourly data measurements.In the case of a large water area,the cluster bypass model becomes more efficient.
基金National Nature Science Foundation of China(No.61273068)International Exchanges and Cooperation Projects of Shanghai Science and Technology Committee,China(No.15220721800)
文摘The underwater wireless sensor network(UWSN) has the features of mobility by drifting,less beacon nodes,longer time for localization and more energy consumption than the terrestrial sensor networks,which makes it more difficult to locate the nodes in marine environment.Aiming at the characteristics of UWSN,a kind of cooperative range-free localization method based on weighted centroid localization(WCL) algorithm for three-dimensional UWSN is proposed.The algorithm assigns the cooperative weights for the beacon nodes according to the received acoustic signal strength,and uses the located unknown nodes as the new beacon nodes to locate the other unknown nodes,so a fast localization can be achieved for the whole sensor networks.Simulation results indicate this method has higher localization accuracy than the centroid localization algorithm,and it needs less beacon nodes and achieves higher rate of effective localization.
文摘This work proposes a geographic routing protocol for UWSNs based on the construction of a 3D virtual grid structure, called Void-Avoidance Grid-based Multipath Position-based Routing (VA-GMPR). It consists of two main components, the multipath routing scheme and the grid-based void avoidance (GVA) mechanism for handling routing holes. The multipath routing scheme adopts node-disjoint routes from the source to the sink in order to enhance network reliability and load balancing. While the GVA mechanism handles the problem of holes in 3D virtual grid structure based on three techniques: Hole bypass, path diversion, and path backtracking. The performance evaluation of the VA-GMPR protocol was compared to a recently proposed grid-based routing protocol for UWSNs, called Energy-efficient Multipath Geographic Grid-based Routing (EMGGR). The results showed that the VA-GMPR protocol outperformed the EMGGR protocol in terms of packet delivery ratio, and end-to end-delay. However, the results also showed that the VA-GMPR protocol exhibited higher energy consumption compared to EMGGR.
文摘With the rapid developments of commercial demands,a majority of advanced researches have been investigated for the applications of underwater wireless sensor(WSN)networks.Recently optical communication has been considered for underwater wireless sensor network.An experimental set-up for testing optical communication underwater has been provided and designed in present papers to maximize the energy coupled from these displacements to the transduction mechanism that converts the mechanical energy into electrical.The true case has been considered by measuring diffuse attenuation coefficients in different seas.One stand out potential optical communication method,Visible Light Communication(VLC)has been talked and several communication methods are compared from many points of view,for example attenuation in salt water.The evaluation of modulation techniques for underwater wireless optical communications has been displayed,and further how the data collection and storage with an underwater WSN is introduced.In this paper current researches for an(UWSN)based on optical communication are studied,in particular the potential VLC method and comparisons of VLC with other optical communication approaches.Underwater challenges would be analyzed by comparing a sort of communication methods,applied in underwater.Future work will be developed at last.