期刊文献+
共找到78篇文章
< 1 2 4 >
每页显示 20 50 100
基于ICA改进ICEEMD的UDS重采样数学模型
1
作者 徐莎莎 胡靖 吕牡丹 《计算机仿真》 2024年第7期535-539,共5页
为了增强不平衡数据集处理效果,提出一种基于ICA改进ICEEMD的不平衡数据集重采样数学模型研究方法。分析不平衡数据集的分布特征,通过改进完备集成经验模态分解(ICEEMD)方法和独立分量分析(ICA)分解不平衡数据集,去除不平衡数据集中的... 为了增强不平衡数据集处理效果,提出一种基于ICA改进ICEEMD的不平衡数据集重采样数学模型研究方法。分析不平衡数据集的分布特征,通过改进完备集成经验模态分解(ICEEMD)方法和独立分量分析(ICA)分解不平衡数据集,去除不平衡数据集中的噪声。通过DP聚类算法和σ准则构建重采样数学模型,利用该模型自动判别不平衡数据集的聚类中心和离群点,同时对多数和少数类样本分析处理,确保样本相对均衡,最终完成不平衡数据集的重采样处理。经实验测试结果表明,所提模型的整体性能明显优于其它重采样模型,验证了其应用价值。 展开更多
关键词 不平衡数据集 重采样 数学模型构建 聚类算法
下载PDF
基于特征注意匹配CYCLEGAN的高速列车轮对轴承数据均衡化方法
2
作者 刘素艳 汪浩宁 +1 位作者 马增强 苑宗昊 《振动与冲击》 EI CSCD 北大核心 2024年第15期32-43,共12页
高速列车滚动轴承一旦发生故障就会停车检修,导致样本数据极度不平衡。数据集的不平衡性会对故障诊断结果的准确性和稳定性产生重要影响。针对该问题,提出一种基于特征注意匹配(feature attention matching, FAM)和循环生成对抗网络(cyc... 高速列车滚动轴承一旦发生故障就会停车检修,导致样本数据极度不平衡。数据集的不平衡性会对故障诊断结果的准确性和稳定性产生重要影响。针对该问题,提出一种基于特征注意匹配(feature attention matching, FAM)和循环生成对抗网络(cycle-consistent generative adversarial networks, CYCLEGAN)的轴承不平衡数据处理CYCLEGAN-FAM方法,该方法在CYCLEGAN的判别器中加入特征注意匹配模块,对从真实图像和生成图像中提取的特征进行对齐,从而提高生成样本的质量。试验表明,该方法能够生成与真实样本高度相似的生成样本,并随着不平衡数据集被逐渐平衡,故障诊断的准确率在凯斯西储大学4类和10类数据集上分别达到了99.8%和99.2%,在QPZZ-II四类和十类数据集上分别达到了99.4%和99.6%。 展开更多
关键词 生成对抗网络 特征注意力匹配(FAM) 不均衡数据集 故障诊断
下载PDF
基于RSIV-RF模型的凉山州泥石流易发性评价
3
作者 饶姗姗 冷小鹏 《地质科技通报》 CAS CSCD 北大核心 2024年第1期275-287,共13页
针对随机森林(RF)模型进行泥石流易发性评价过程中存在连续型因子依靠主观意识分级、随机选取的非泥石流样本准确度较低等问题,以位于四川西南部的凉山彝族自治州为研究区,提出基于统计学先验模型抽样的随机森林对研究区进行泥石流易发... 针对随机森林(RF)模型进行泥石流易发性评价过程中存在连续型因子依靠主观意识分级、随机选取的非泥石流样本准确度较低等问题,以位于四川西南部的凉山彝族自治州为研究区,提出基于统计学先验模型抽样的随机森林对研究区进行泥石流易发性评价分区。利用累计灾害频率等曲线的相对变化对连续型因子进行分级处理;采用粗糙集理论(RS)和信息量法(IV)计算加权信息量值,划定极低和低易发性区并从中选择负样本数据。通过袋外误差(OOB)变化曲线确定RF模型的最佳树棵数n_estimators和分裂特征数max_features,随后构建加权信息量-随机森林(RSIV-RF)模型预测凉山州泥石流易发性。进一步地,与从全区随机选择非泥石流样本的RF模型开展对比研究。结果表明,训练集和测试集下RSIV-RF模型的准确度分别为0.89,0.83,且对应的ROC曲线的AUC值分别为0.920,0.895,均高于单独的RF模型;RSIV-RF绘制的泥石流易发性评价图与历史灾害分布较为一致,较高和高易发性等级区域占研究区面积比为18.625%,包含了78.57%的泥石流点。性能评估和易发性统计结果均表明基于RSIV-RF能够解决单独模型存在的非泥石样本采样不准确的问题,其泥石流易发性预测精度更高,在凉山州地区泥石流易发性评价研究中具有较好的适应性。 展开更多
关键词 随机森林(RF) 不平衡数据集 加权信息量(RSIV) 泥石流 RSIV-RF模型 凉山州 易发性评价
下载PDF
集成方法在极限学习机中的应用
4
作者 高浩森 李凤莲 +2 位作者 张明泽 李晓辉 贾文辉 《电子设计工程》 2024年第12期32-36,共5页
针对传统的单一机器学习模型对非平衡数据集分类预测性能偏低的问题,通过用Adaboost策略将传统的最大化Gm代价调整极限学习机集成起来,生成一种最大化Gm集成极限学习机分类模型(MG-CCR-EELM),使其能够适用于不同平衡率非平衡数据集的分... 针对传统的单一机器学习模型对非平衡数据集分类预测性能偏低的问题,通过用Adaboost策略将传统的最大化Gm代价调整极限学习机集成起来,生成一种最大化Gm集成极限学习机分类模型(MG-CCR-EELM),使其能够适用于不同平衡率非平衡数据集的分类。通过与现有的最大化Gm代价调整极限学习机、代价敏感混合属性多决策树、改进的模糊支持向量机、随机森林等用于非平衡数据集的分类模型的实验对比,MG-CCR-EELM模型在UCI公共数据集上的准确率最高可提升3.01%,在经颅多普勒数据集上的分类预测准确率提升了5.67%,验证了MG-CCR-EELM模型是一种有效的集成学习模型。 展开更多
关键词 集成学习 代价调整极限学习机 非平衡数据集 分类预测
下载PDF
基于不平衡图像的河湖水质监测研究
5
作者 磨首屹 徐绪堪 王晓娇 《信息技术》 2024年第5期46-51,共6页
水质监测对于河湖生态建设有着重要意义,但传统河湖水质监测方法存在监测难度大、监测成本高等问题。为了使水质监测更为智能、方便,文中基于具有不平衡特点的河湖图像,通过代价敏感交叉熵函数方法改进了VGG16卷积神经网络分析河湖图像... 水质监测对于河湖生态建设有着重要意义,但传统河湖水质监测方法存在监测难度大、监测成本高等问题。为了使水质监测更为智能、方便,文中基于具有不平衡特点的河湖图像,通过代价敏感交叉熵函数方法改进了VGG16卷积神经网络分析河湖图像进行水质监测,并与随机欠采样、图像增强等不平衡数据处理方法进行对比。经过大量实验后,结果显示文中将VGG16卷积神经网络与代价交叉熵函数结合方法的准确率、精准率、召回率与F1值均高于其他方法,分别可以达到0.91、0.92、0.91、0.92,证明该方法可以有效地对河湖不平衡图像进行水质分类。 展开更多
关键词 水质监测 不平衡数据集 代价敏感 卷积神经网络 VGG16
下载PDF
基于加权复杂度的SMOTE算法及其在软件缺陷预测中的应用
6
作者 魏威 江峰 《计算机与数字工程》 2024年第5期1418-1422,1427,共6页
近年来,SMOTE被广泛应用于软件缺陷预测中不平衡数据的处理。然而,现有的SMOTE算法普遍忽视了不同样本的复杂度存在很大差异这一问题。事实上,在缺陷预测时样本的复杂度与其是否具有缺陷之间存在着密切的联系,因此,在进行过采样时,有必... 近年来,SMOTE被广泛应用于软件缺陷预测中不平衡数据的处理。然而,现有的SMOTE算法普遍忽视了不同样本的复杂度存在很大差异这一问题。事实上,在缺陷预测时样本的复杂度与其是否具有缺陷之间存在着密切的联系,因此,在进行过采样时,有必要利用样本的复杂度来辅助新样本的合成,从而提高缺陷预测的性能。如何度量样本的复杂度非常重要,论文在计算样本复杂度时充分考虑到每一个条件属性的权重,从而得到一种加权复杂度的概念。基于加权复杂度,提出一种新的SMOTE算法——WCP-SMOTE,并将其应用于软件缺陷预测。WCP-SMOTE算法首先利用粗糙集中的粒度决策熵来计算决策表中每个条件属性的重要性和权重;其次,通过对样本在所有属性上的取值进行加权求和,从而得到该样本的加权复杂度;第三,根据加权复杂度对少数类样本进行升序排序,并从头到尾对相邻的两个少数类样本求平均来不断地合成新的样本,直到获得一个平衡的数据集。在多个缺陷预测数据集上的实验表明,利用WCP-SMOTE算法来处理不平衡数据能够获得更好的软件缺陷预测性能。 展开更多
关键词 软件缺陷预测 不平衡数据 粗糙集 粒度决策熵 加权复杂度 SMOTE
下载PDF
基于PSO-DBN结构的不平衡大数据分类研究
7
作者 谢晓丽 姚兴平 《长沙大学学报》 2024年第2期15-22,50,共9页
针对传统算法在分类处理不平衡大数据集时存在的精度差和效率低等问题,提出了一种基于PSO-DBN的分类算法。先采用融合渐进式的过采样模式改善大数据集的不均衡状况,并优化样本的类别与数量组合;设计了一种堆栈式的RBM结构,以当前RBM的... 针对传统算法在分类处理不平衡大数据集时存在的精度差和效率低等问题,提出了一种基于PSO-DBN的分类算法。先采用融合渐进式的过采样模式改善大数据集的不均衡状况,并优化样本的类别与数量组合;设计了一种堆栈式的RBM结构,以当前RBM的隐含层输出项作为下一个RBM的可见层输入项,提升DBN整体数据训练能力;基于PSO仿生算法改善初始状态下DBN权值的分布状态,并优选出最佳的学习因子、惯性权重等核心参数,实现算法在全局范围内的寻优,同时提高网络模型整体的数据训练能力和收敛速度。实验结果显示,提出算法在不同的不平衡比例下分类精度均具有较为明显的优势,同时分类效率加速比值被控制在1.05以下。 展开更多
关键词 PSO-DBN 不平衡大数据集 RBM结构 训练能力 分类精度
下载PDF
非均衡数据集下基于孪生卷积网络的变压器绕组变形故障识别方法 被引量:3
8
作者 马旭聪 唐文虎 +1 位作者 牛哲文 辛妍丽 《高压电器》 CAS CSCD 北大核心 2023年第10期120-128,共9页
变压器绕组是变压器中最常发生故障的部分,故障类型多且常见程度不同。目前已有学者将机器学习应用于变压器绕组变形故障识别,但存在数据集不均衡时预测准确率低、运算时间长、所需样本量大等问题。为了解决上述的问题,文中提出了一种... 变压器绕组是变压器中最常发生故障的部分,故障类型多且常见程度不同。目前已有学者将机器学习应用于变压器绕组变形故障识别,但存在数据集不均衡时预测准确率低、运算时间长、所需样本量大等问题。为了解决上述的问题,文中提出了一种非均衡数据集下基于孪生卷积网络的变压器绕组变形故障识别方法,收集了变压器故障样本并搭建多种故障诊断模型进行对比以验证所提出方法的有效性。经过模型训练和验证,使用孪生卷积网络在非均衡数据集下进行变压器绕组变形故障识别正确率达到90%左右,高于卷积网络(CNN)、支持向量机(SVM)等其他方法的正确率。 展开更多
关键词 孪生网络 电力变压器 绕组变形故障 非均衡数据集
下载PDF
基于IWAE的不平衡数据集下轴承故障诊断研究 被引量:3
9
作者 李梦男 李琨 吴聪 《机械强度》 CAS CSCD 北大核心 2023年第3期569-575,共7页
针对目前现有轴承故障诊断方法对不平衡数据集中的少数类诊断准确率低的问题,提出了不平衡数据集下基于重要性加权自编码器(Importance Weighted Auto-encoder,IWAE)的轴承故障诊断方法。首先通过少数类的样本数据来训练IWAE网络,将生... 针对目前现有轴承故障诊断方法对不平衡数据集中的少数类诊断准确率低的问题,提出了不平衡数据集下基于重要性加权自编码器(Importance Weighted Auto-encoder,IWAE)的轴承故障诊断方法。首先通过少数类的样本数据来训练IWAE网络,将生成的样本数据加入到原始数据集中,得到平衡后的数据集;然后引入深度学习方法作为诊断网络,将平衡后的数据集直接输入诊断网络中,自适应的学习故障特征,实现故障分类。为了增强诊断网络的准确率,使用一维多尺度卷积神经网络进行故障诊断。大量的定性定量实验表明,所提出的方法在不平衡比为1/7时,少数类诊断的准确率已经能够达到98.90%,均优于其他现有模型,并且拥有较好的收敛性和泛化性。 展开更多
关键词 不平衡数据集 重要性加权自编码 一维多尺度卷积神经网络 轴承故障诊断
下载PDF
基于高斯混合聚类采样的不平衡数据处理方法 被引量:1
10
作者 严涛 江开忠 +1 位作者 姜新盈 王舒梵 《计算机应用与软件》 北大核心 2023年第12期305-311,共7页
在处理不平衡数据时,为有效剔除多数样本内的冗余信息和合成有价值的少数样本,提出一种基于高斯混合模型的采样算法(MSGMM)。将多数类和少数类样本分别聚类,最佳聚类个数通过迭代确定。在迭代时,先初步选择聚类个数并用高斯混合模型聚... 在处理不平衡数据时,为有效剔除多数样本内的冗余信息和合成有价值的少数样本,提出一种基于高斯混合模型的采样算法(MSGMM)。将多数类和少数类样本分别聚类,最佳聚类个数通过迭代确定。在迭代时,先初步选择聚类个数并用高斯混合模型聚类。对于多数样本的每一个聚类C的剔除比例为其聚类中心到SVM生成超平面的距离权重和其数量权重的加权;对少数类样本按聚类中心到超平面的距离来划分采样比例;并用Random-SMOTE算法合成新样本,以此达到样本数量之间的平衡。实验表明该算法相较于传统算法,精度有1%~16%的提升,验证了该算法的有效性。 展开更多
关键词 不平衡数据集 分类 高斯混合模型 混合采样
下载PDF
一种面向类别不平衡SSL VPN加密流量识别方法
11
作者 王宇航 姜文刚 +3 位作者 翟江涛 王晰晨 戴伟东 张帆 《计算机应用与软件》 北大核心 2023年第12期318-324,349,共8页
传统方法在处理不平衡的海量高维数据时存在特征提取困难、检测率低的问题。对此,提出一种先使用基于遗传染色体理论的数据合成过采样技术(NEDIL)平衡原始数据集,再利用基于注意力机制的双向GRU网络流量识别模型识别SSL VPN流量的方法... 传统方法在处理不平衡的海量高维数据时存在特征提取困难、检测率低的问题。对此,提出一种先使用基于遗传染色体理论的数据合成过采样技术(NEDIL)平衡原始数据集,再利用基于注意力机制的双向GRU网络流量识别模型识别SSL VPN流量的方法。不仅解决了样本不平衡造成的模型拟合问题,同时能够增强关键特征的区分度,解决一般识别模型无法区分时间序列数据重要程度的差异性的问题。对比实验结果表明,该方法在公开的流量数据集上取得了比当前典型方法更好的识别精度,实现了整体高于92%的应用识别准确度。 展开更多
关键词 SSL VPN 不平衡数据集 过采样 深度学习 注意力机制
下载PDF
基于ABLSTM的SQL注入攻击检测研究 被引量:1
12
作者 沈伍强 崔磊 +1 位作者 许明杰 杨春松 《微型电脑应用》 2023年第3期43-46,共4页
SQL注入作为最常见的注入攻击方式之一,具有多样性、突变性和隐蔽性,由于传统的攻击检测方法在对电力信息系统提供安全防护方面稍显不足,因此文章提出了一种基于ABLSTM的SQL注入攻击检测方法。一方面,通过数据正样本生成非平衡数据集来... SQL注入作为最常见的注入攻击方式之一,具有多样性、突变性和隐蔽性,由于传统的攻击检测方法在对电力信息系统提供安全防护方面稍显不足,因此文章提出了一种基于ABLSTM的SQL注入攻击检测方法。一方面,通过数据正样本生成非平衡数据集来平衡数据的分布,缓解过拟合;另一方面,引入Attention机制到Bi-LSTM模型中,在进行特征选择时有效增强关键特征的权重,提高分类的准确性。通过对比实验验证,所提出的方法在检测效果和准确性方面相比其余方法具备显著的优势。 展开更多
关键词 SQL注入 非平衡数据集 过拟合现象 Bi-LSTM
下载PDF
基于EDA的加权KNN分类算法
13
作者 谢雨寒 潘峰 《计算机时代》 2023年第8期37-40,共4页
针对传统K近邻(KNN)算法对不平衡数据集分类的不足,提出一种基于分布估计算法改进的加权KNN算法EDA-KNN。在没有先验知识的前提下,为了求解最优加权KNN算法的权重向量,构建矩阵结构种群。运用分布估计算法建立概率模型,进行采样、寻优... 针对传统K近邻(KNN)算法对不平衡数据集分类的不足,提出一种基于分布估计算法改进的加权KNN算法EDA-KNN。在没有先验知识的前提下,为了求解最优加权KNN算法的权重向量,构建矩阵结构种群。运用分布估计算法建立概率模型,进行采样、寻优等一系列操作,经过若干次迭代,最终获得使样本分类准确率达到最高的权重向量。通过对多个数据集进行分类,结果表明,EDA-KNN算法能够显著提升对于不平衡数据集分类的准确率,分类器性能稳定。 展开更多
关键词 不平衡数据集 KNN算法 分布估计算法 矩阵结构 分级权重
下载PDF
基于特征权重与K-Medoids算法结合的非均衡数据处理方法
14
作者 杨栋 程科 +1 位作者 张晨 张瑞祥 《计算机与数字工程》 2023年第6期1338-1342,共5页
目前处理非均衡数据的方法多是以重采样方法来延伸的,传统的方法在解决非均衡数据分类问题时会使样本数据分类的精确度偏向于多数类样本,而且没有解决好类内不均衡的问题,未将样本数据的特征权重考虑到分类算法或者采样方法中。因此论... 目前处理非均衡数据的方法多是以重采样方法来延伸的,传统的方法在解决非均衡数据分类问题时会使样本数据分类的精确度偏向于多数类样本,而且没有解决好类内不均衡的问题,未将样本数据的特征权重考虑到分类算法或者采样方法中。因此论文提出了一种基于特征权重值与K-Medoids算法相结合的欠采样方法,这种方法解决了之前提出的问题,抽样得到的数据更有利于决策处理,从而使得分类器对不平衡数据的分类性能有所提高。通过实验表明,论文提出的方法与传统的随机欠采样方法相比,在处理相同标准数据集时具有更好分类效果,显著提高了数据集中各类的分类精度。 展开更多
关键词 非均衡数据集 特征权重 K-Medoids 欠采样
下载PDF
基于最小生成树的不平衡数据集聚类算法
15
作者 蓝欢玉 《信息与电脑》 2023年第14期120-122,共3页
采用传统不平衡数据集聚类算法直接对数据集编码树进行构建,而未对数据集密度特征进行提取,造成传统算法数据聚类效果差,因此提出了基于最小生成树的不平衡数据集聚类算法。先利用数据区域密度的敏感性,提取数据密度特征,再利用提取的... 采用传统不平衡数据集聚类算法直接对数据集编码树进行构建,而未对数据集密度特征进行提取,造成传统算法数据聚类效果差,因此提出了基于最小生成树的不平衡数据集聚类算法。先利用数据区域密度的敏感性,提取数据密度特征,再利用提取的数据集密度特征构建编码树,并计算不平衡聚类状态下的数据集,最后基于最小生成树实现不平衡数据集聚类。设计对比实验,实验结果表明该研究算法聚类效果最好,具有研究价值。 展开更多
关键词 最小生成树 不平衡数据集 数据集聚类 聚类算法
下载PDF
基于类别分布的特征选择框架 被引量:18
16
作者 靖红芳 王斌 +1 位作者 杨雅辉 徐燕 《计算机研究与发展》 EI CSCD 北大核心 2009年第9期1586-1593,共8页
目前已有很多种特征选择方法,但就目前所知,没有一种方法能够在非平衡语料上取得很好的效果.依据特征在类别间的分布特点提出了基于类别分布的特征选择框架.该框架能够利用特征的分布信息选出具有较强区分能力的特征,同时允许给类别灵... 目前已有很多种特征选择方法,但就目前所知,没有一种方法能够在非平衡语料上取得很好的效果.依据特征在类别间的分布特点提出了基于类别分布的特征选择框架.该框架能够利用特征的分布信息选出具有较强区分能力的特征,同时允许给类别灵活地分配权重,分配较大的权重给稀有类别则提高稀有类别的分类效果,所以它适用于非平衡语料,也具有很好的扩展性.另外,OCFS和基于类别分布差异的特征过滤可以看作该框架的特例.实现该框架得到了具体的特征选择方法,Retuers-21578语料及复旦大学语料等两个非平衡语料上的实验表明,它们的Macro和Micro F1效果都优于IG,CHI和OCFS. 展开更多
关键词 特征选择 非平衡语料 特征降维 文本分类 数据挖掘
下载PDF
不均衡数据集中基于Adaboost的过抽样算法 被引量:13
17
作者 韩慧 王文渊 毛炳寰 《计算机工程》 CAS CSCD 北大核心 2007年第10期207-209,共3页
为了提高不均衡数据集中少数类的分类性能,该文融合了提升和过抽样的优点,提出了基于提升算法Adaboost的过抽样算法MCMO-Boost,并且将其与决策树算法C4.5、提升算法Adaboost和过抽样算法SMOTE进行了实验比较与分析。结果表明,MCMO-Boos... 为了提高不均衡数据集中少数类的分类性能,该文融合了提升和过抽样的优点,提出了基于提升算法Adaboost的过抽样算法MCMO-Boost,并且将其与决策树算法C4.5、提升算法Adaboost和过抽样算法SMOTE进行了实验比较与分析。结果表明,MCMO-Boost算法在少数类和数据集的总体分类性能方面都优于其它算法。 展开更多
关键词 不均衡数据集 过抽样 提升算法
下载PDF
基于ν-SVM的不平衡数据挖掘研究 被引量:8
18
作者 郑恩辉 许宏 +1 位作者 李平 宋执环 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2006年第10期1682-1687,共6页
针对基于精度的现有分类算法对不平衡数据挖掘表现出“有偏性”,即正例样本的分类和预测性能差于反例样本的分类和预测性能,基于-νSVM及其启发,提出支持向量数和边界支持向量数的界,进而提出支持向量率和边界支持向量率的界,并把这些... 针对基于精度的现有分类算法对不平衡数据挖掘表现出“有偏性”,即正例样本的分类和预测性能差于反例样本的分类和预测性能,基于-νSVM及其启发,提出支持向量数和边界支持向量数的界,进而提出支持向量率和边界支持向量率的界,并把这些界分别扩展到正例和反例.在此基础上,证明了正例的支持向量率和边界支持向量率分别依概率大于反例的支持向量率和边界支持向量率,以及正例的分类性能依概率差于反例的分类性能.针对German credit和Heart disease两个Benchmark数据集的试验研究,验证了本文假设的合理性和上述结论的正确性. 展开更多
关键词 不平衡数据 有偏分类器 支持向量机
下载PDF
不平衡数据集上的文本分类特征选择新方法 被引量:8
19
作者 张玉芳 王勇 +1 位作者 熊忠阳 刘明 《计算机应用研究》 CSCD 北大核心 2011年第12期4532-4534,共3页
针对不平衡数据集上进行文本分类,传统的特征选择方法容易导致分类器倾向于大类而忽视小类,提出一种新的特征选择方法 IPR(integrated probability ratio)。该方法综合考虑特征在正类和负类中的分布性质,结合四种衡量特征类别相关性的... 针对不平衡数据集上进行文本分类,传统的特征选择方法容易导致分类器倾向于大类而忽视小类,提出一种新的特征选择方法 IPR(integrated probability ratio)。该方法综合考虑特征在正类和负类中的分布性质,结合四种衡量特征类别相关性的指标对特征词进行评分,能够更好地解决传统特征选择方法在不平衡数据集上的不适应性,在不降低大类分类性能的同时提高了小类的识别率。实验结果表明,该方法有效可行。 展开更多
关键词 不平衡数据集 文本分类 特征选择 正类 负类
下载PDF
不平衡数据知识挖掘:类分布对支持向量机分类的影响 被引量:17
20
作者 郑恩辉 李平 宋执环 《信息与控制》 CSCD 北大核心 2005年第6期703-708,共6页
基于标准支持向量机及其启发,提出并证明支持向量数(率)和边界支持向量数(率)的界,并分别推广到正例类和反例类.在此基础上,证明正例的分类精度依概率小于反例的分类精度.虚拟数据仿真和Benchm ark数据仿真表明本文所提方法的有效性和... 基于标准支持向量机及其启发,提出并证明支持向量数(率)和边界支持向量数(率)的界,并分别推广到正例类和反例类.在此基础上,证明正例的分类精度依概率小于反例的分类精度.虚拟数据仿真和Benchm ark数据仿真表明本文所提方法的有效性和结论的正确性.* 展开更多
关键词 不平衡数据 有偏分类器 支持向量机
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部