期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
不确定数据聚类的U-PAM算法和UM-PAM算法的研究 被引量:7
1
作者 何云斌 张志超 +1 位作者 万静 李松 《计算机科学》 CSCD 北大核心 2016年第6期263-269,共7页
UK-means算法在处理不确定数据时对孤立点非常敏感,而且事先必须已知不确定数据的分布函数或概率密度,然而这在实际中往往很难获得。因此,针对UK-means在处理不确定测量数据时的不足,首先提出了基于区间数的PAM不确定聚类算法——U-PAM... UK-means算法在处理不确定数据时对孤立点非常敏感,而且事先必须已知不确定数据的分布函数或概率密度,然而这在实际中往往很难获得。因此,针对UK-means在处理不确定测量数据时的不足,首先提出了基于区间数的PAM不确定聚类算法——U-PAM,该算法用区间数和标准差合理地描述了不确定测量数据的不确定性,进而完成有效的聚类;其次,针对海量不确定测量数据难以聚类的问题,基于U-PAM聚类算法,采用抽样技术提出了处理海量不确定测量数据的算法——UM-PAM算法,该算法先抽样,对样本数据聚类,然后再总体聚类;最后,基于UPAM算法和CH聚类的有效性指标函数对聚类结果进行分析,以确定最佳聚类数。实验理论表明,所提算法聚类效果明显。关键词不确定数据,区间数,聚类算法,PAM算法和 CH 聚类的有效性指标函数对聚类结果进行分析,以确定最佳聚类数。实验理论表明,所提算法聚类效果明显。 展开更多
关键词 不确定数据 区间数 聚类算法 pam
下载PDF
基于区间数聚类的无线传感器网络定位方法 被引量:14
2
作者 彭宇 罗清华 +1 位作者 王丹 彭喜元 《自动化学报》 EI CSCD 北大核心 2012年第7期1190-1199,共10页
在基于接收信号强度指示(Received signal strength indicator,RSSI)测距的无线传感器网络(Wireless sensor network,WSN)定位方法应用过程中,信号强度与对应通信距离的对数成线性关系的假设在实际无线通信环境下几乎不能满足,从而导致... 在基于接收信号强度指示(Received signal strength indicator,RSSI)测距的无线传感器网络(Wireless sensor network,WSN)定位方法应用过程中,信号强度与对应通信距离的对数成线性关系的假设在实际无线通信环境下几乎不能满足,从而导致定位误差较大.针对此问题,本文首先利用区间数表示方法结合实际定位环境中RSSI数据的统计信息表示RSSI的分布区域,并采用区间数聚类方法实现距离估计,以减小由于RSSI值不确定性引起的距离估计误差,然后利用这些距离估计值实现基于测距的WSN定位方法.采用三种实际通信环境下RSSI测量数据完成的定位实验结果表明,本文提出的基于区间数聚类RSSI-通信距离(RSSI-D)估计的定位方法可有效地提高定位精度. 展开更多
关键词 无线传感器网络 定位 不确定性数据 聚类 区间数
下载PDF
区间数模糊c均值聚类中相对位置相异度的研究 被引量:2
3
作者 袁飞 詹宜巨 王永华 《信号处理》 CSCD 北大核心 2012年第10期1370-1378,共9页
区间数模糊c均值聚类方法中,区间数距离公式存在无法描述区间数之间相对位置的问题,针对该问题,本文分析了该问题产生原因,提出了相对位置相异度公式,并将该相异度公式应用于区间数模糊c均值聚类中。理论分析说明相对位置相异度公式能... 区间数模糊c均值聚类方法中,区间数距离公式存在无法描述区间数之间相对位置的问题,针对该问题,本文分析了该问题产生原因,提出了相对位置相异度公式,并将该相异度公式应用于区间数模糊c均值聚类中。理论分析说明相对位置相异度公式能定量描述区间数之间相异程度,还能描述区间数之间相对位置。仿真实验结果表明,相对于基于现有区间数距离公式的区间数模糊c均值聚类,基于相对位置相异度的区间数模糊c均值聚类方法具有更好的聚类效果。同时,给出了相对位置相异度公式中参数选择标准。 展开更多
关键词 不确定数据 区间数 区间数距离 模糊C均值聚类
下载PDF
基于区间数的不确定数据流2k近邻聚类算法 被引量:8
4
作者 陆亿红 任胜亮 《浙江工业大学学报》 CAS 北大核心 2018年第3期321-326,共6页
现有数据流聚类算法多数面向的是确定性数据,可是不确定数据的数据流聚类逐步被受到关注,因为经典的不确定数据聚类算法具有概率密度函数获取困难、实用性不强以及计算复杂等缺点,提出一种基于区间数的不确定数据流聚类算法UIDStream.... 现有数据流聚类算法多数面向的是确定性数据,可是不确定数据的数据流聚类逐步被受到关注,因为经典的不确定数据聚类算法具有概率密度函数获取困难、实用性不强以及计算复杂等缺点,提出一种基于区间数的不确定数据流聚类算法UIDStream.算法用区间数来表示属性不确定性数据和基于区间数的距离计算方法,定义了不确定性数据之间的相似度,并利用传统k近邻聚类的思想,提出基于区间数的2k近邻微簇和最优2k近邻微簇的概念,通过最优2k近邻微簇的融合,实现不确定数据流的聚类.实验结果表明:改进后的算法具有良好的聚类效果,提高了不确定数据流聚类的聚类质量和速率. 展开更多
关键词 不确定数据 区间数 数据流聚类 数据挖掘
下载PDF
一种多维不确定性数据流聚类算法 被引量:13
5
作者 罗清华 彭宇 彭喜元 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第6期1330-1338,共9页
目前在很多不确定性数据流聚类方法研究中,存在着聚类模型和数据流的数据模型失配问题,且它们往往假定不确定性数据的概率密度函数、概率分布函数或者概率是已知的,然而这些信息在实际系统中很难获得。鉴于此,本文提出一种基于区间数的... 目前在很多不确定性数据流聚类方法研究中,存在着聚类模型和数据流的数据模型失配问题,且它们往往假定不确定性数据的概率密度函数、概率分布函数或者概率是已知的,然而这些信息在实际系统中很难获得。鉴于此,本文提出一种基于区间数的多维不确定性数据流聚类算法(UIDMicro)。在该算法中,首先利用区间数结合不确定性数据的统计信息表示多维不确定性数据流,然后采用"当前簇"和"候选簇"两层簇窗口对不确定性数据流进行聚类,通过动态调整两层簇窗口实现聚类模型和数据模型的实时匹配。实验结果表明,该方法具有较高的聚类精度和处理效率。 展开更多
关键词 不确定性数据流 聚类算法 区间数
下载PDF
基于区间数的多维不确定性数据UID-DBSCAN聚类算法 被引量:3
6
作者 魏方圆 黄德才 《计算机科学》 CSCD 北大核心 2017年第B11期442-447,共6页
不确定性数据聚类方法的研究日益受到广泛关注,其中UIDK-means算法与U-PAM算法继承了基于划分算法无法识别任意形状簇和对噪声点敏感的缺陷。FDBSCAN算法事先假定不确定性数据的概率分布函数或概率密度函数是已知的,然而这些信息在实际... 不确定性数据聚类方法的研究日益受到广泛关注,其中UIDK-means算法与U-PAM算法继承了基于划分算法无法识别任意形状簇和对噪声点敏感的缺陷。FDBSCAN算法事先假定不确定性数据的概率分布函数或概率密度函数是已知的,然而这些信息在实际应用中往往难以获取。针对上述算法的不足,提出一种基于区间数的多维不确定性数据聚类UID-DBSCAN算法。该算法利用区间数结合数据的统计信息合理地表示不确定性数据,采用低计算复杂度的区间数距离函数衡量不确定性数据对象间的相似度,首次提出区间数的密度、密度可达与密度相连等概念,并将其用于扩展簇中,同时结合数据集的统计特征自适应地选取算法的密度参数来实现自动聚类。实验结果表明,UID-DBSCAN算法能够有效识别噪声,处理任意形状簇,具有较高的聚类精度和较低的计算复杂度。 展开更多
关键词 不确定性数据 区间数 聚类算法 DBSCAN
下载PDF
基于区间数的不确定性数据聚类算法:UD-OPTICS 被引量:3
7
作者 吴翠先 何少元 《计算机工程与科学》 CSCD 北大核心 2019年第7期1303-1311,共9页
在不确定性数据聚类算法的研究中,普遍需要假设不确定性数据服从某种分布,继而获得表示不确定性数据的概率密度函数或概率分布函数,然而这种假设很难保证与实际应用系统中的不确定性数据分布一致。现有的基于密度的算法对初始参数敏感,... 在不确定性数据聚类算法的研究中,普遍需要假设不确定性数据服从某种分布,继而获得表示不确定性数据的概率密度函数或概率分布函数,然而这种假设很难保证与实际应用系统中的不确定性数据分布一致。现有的基于密度的算法对初始参数敏感,在对密度不均匀的不确定性数据聚类时,无法发现任意密度的类簇。鉴于这些不足,提出基于区间数的不确定性数据对象排序识别聚类结构算法(UD-OPTICS)。该算法利用区间数理论,结合不确定性数据的相关统计信息来更加合理地表示不确定性数据,提出了低计算复杂度的区间核心距离与区间可达距离的概念与计算方法,将其用于度量不确定性数据间的相似度,拓展类簇与对象排序识别聚类结构。该算法可很好地发现任意密度的类簇。实验结果表明,UD-OPTICS算法具有较高的聚类精度和较低的复杂度。 展开更多
关键词 不确定性数据 区间数 密度聚类算法 OPTICS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部