Damage to electrical equipment in an earthquake can lead to power outage of power systems.Seismic fragility analysis is a common method to assess the seismic reliability of electrical equipment.To further guarantee th...Damage to electrical equipment in an earthquake can lead to power outage of power systems.Seismic fragility analysis is a common method to assess the seismic reliability of electrical equipment.To further guarantee the efficiency of analysis,multi-source uncertainties including the structure itself and seismic excitation need to be considered.A method for seismic fragility analysis that reflects structural and seismic parameter uncertainty was developed in this study.The proposed method used a random sampling method based on Latin hypercube sampling(LHS)to account for the structure parameter uncertainty and the group structure characteristics of electrical equipment.Then,logistic Lasso regression(LLR)was used to find the seismic fragility surface based on double ground motion intensity measures(IM).The seismic fragility based on the finite element model of an±1000 kV main transformer(UHVMT)was analyzed using the proposed method.The results show that the seismic fragility function obtained by this method can be used to construct the relationship between the uncertainty parameters and the failure probability.The seismic fragility surface did not only provide the probabilities of seismic damage states under different IMs,but also had better stability than the fragility curve.Furthermore,the sensitivity analysis of the structural parameters revealed that the elastic module of the bushing and the height of the high-voltage bushing may have a greater influence.展开更多
Uncertainty is an essentially challenging for safe construction and long-term stability of geotechnical engineering.The inverse analysis is commonly utilized to determine the physico-mechanical parameters.However,conv...Uncertainty is an essentially challenging for safe construction and long-term stability of geotechnical engineering.The inverse analysis is commonly utilized to determine the physico-mechanical parameters.However,conventional inverse analysis cannot deal with uncertainty in geotechnical and geological systems.In this study,a framework was developed to evaluate and quantify uncertainty in inverse analysis based on the reduced-order model(ROM)and probabilistic programming.The ROM was utilized to capture the mechanical and deformation properties of surrounding rock mass in geomechanical problems.Probabilistic programming was employed to evaluate uncertainty during construction in geotechnical engineering.A circular tunnel was then used to illustrate the proposed framework using analytical and numerical solution.The results show that the geomechanical parameters and associated uncertainty can be properly obtained and the proposed framework can capture the mechanical behaviors under uncertainty.Then,a slope case was employed to demonstrate the performance of the developed framework.The results prove that the proposed framework provides a scientific,feasible,and effective tool to characterize the properties and physical mechanism of geomaterials under uncertainty in geotechnical engineering problems.展开更多
In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to pro...In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to propose a novel mechanism-motor coupling dynamic modeling method,in which the relationship between mechanism motion and motor rotation is established according to the geometric coordination of the system.The advantages of this include establishing intuitive coupling between the mechanism and motor,facilitating the discussion for the influence of both mechanical and electrical parameters on the mechanism,and enabling dynamic simulation with controller to take the randomness of the electric load into account.Dynamic simulation considering feedback control of ammunition delivery system is carried out,and the feasibility of the model is verified experimentally.Based on probability density evolution theory,we comprehensively discuss the effects of system parameters on mechanism motion from the perspective of uncertainty quantization.Our work can not only provide guidance for engineering design of ammunition delivery mechanism,but also provide theoretical support for modeling and uncertainty quantification research of mechatronics system.展开更多
Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of ...Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of underground nuclear explosions(UNEs).However,the migration of signature radionuclide gases between the nuclear cavity and surface is not well understood because complex processes are involved,including the generation of complex fracture networks,reactivation of natural fractures and faults,and thermo-hydro-mechanical-chemical(THMC)coupling of radionuclide gas transport in the subsurface.In this study,we provide an experimental investigation of hydro-mechanical(HM)coupling among gas flow,stress states,rock deformation,and rock damage using a unique multi-physics triaxial direct shear rock testing system.The testing system also features redundant gas pressure and flow rate measurements,well suited for parameter uncertainty quantification.Using porous tuff and tight granite samples that are relevant to historic UNE tests,we measured the Biot effective stress coefficient,rock matrix gas permeability,and fracture gas permeability at a range of pore pressure and stress conditions.The Biot effective stress coefficient varies from 0.69 to 1 for the tuff,whose porosity averages 35.3%±0.7%,while this coefficient varies from 0.51 to 0.78 for the tight granite(porosity<1%,perhaps an underestimate).Matrix gas permeability is strongly correlated to effective stress for the granite,but not for the porous tuff.Our experiments reveal the following key engineering implications on transport of radionuclide gases post a UNE event:(1)The porous tuff shows apparent fracture dilation or compression upon stress changes,which does not necessarily change the gas permeability;(2)The granite fracture permeability shows strong stress sensitivity and is positively related to shear displacement;and(3)Hydromechanical coupling among stress states,rock damage,and gas flow appears to be stronger in tight granite than in porous tuff.展开更多
Reasoning theories are divided into certainty reasoning theories and uncertainty reasoning theories. Now, only certainty reasoning theories are used to detect and diagnose satellite faults. However, in practice, it is...Reasoning theories are divided into certainty reasoning theories and uncertainty reasoning theories. Now, only certainty reasoning theories are used to detect and diagnose satellite faults. However, in practice, it is difficult to detect and diagnose some faults of the satellite automatically only by use of certainty reasoning theories. The reason is that detection and diagnosis of these faults require a rational reasoning and a fault tolerant capability. Fortunately, uncertainty reasoning theories can meet these requirements. It is attracting attention of many experts in the space field all over the world that uncertainty reasoning theories are applied to detect and diagnose satellite faults. Uncertainty reasoning theories include several kinds of theories, such as inclusion degree theory, rough set theory, evidence reasoning theory, probabilistic reasoning theory, fuzzy reasoning theory, and so on. Inclusion degree theory, rough set theory and evidence reasoning theory are three advanced ones. Based on these three theories respectively, the author introduces three new methods to detect and diagnose satellite faults in this paper. It is shown that the methods, suitable for detecting and diagnosing satellite faults, especially uncertainty faults, can remedy the defects of the current methods.展开更多
This work introduces a modification to the Heisenberg Uncertainty Principle (HUP) by incorporating quantum complexity, including potential nonlinear effects. Our theoretical framework extends the traditional HUP to co...This work introduces a modification to the Heisenberg Uncertainty Principle (HUP) by incorporating quantum complexity, including potential nonlinear effects. Our theoretical framework extends the traditional HUP to consider the complexity of quantum states, offering a more nuanced understanding of measurement precision. By adding a complexity term to the uncertainty relation, we explore nonlinear modifications such as polynomial, exponential, and logarithmic functions. Rigorous mathematical derivations demonstrate the consistency of the modified principle with classical quantum mechanics and quantum information theory. We investigate the implications of this modified HUP for various aspects of quantum mechanics, including quantum metrology, quantum algorithms, quantum error correction, and quantum chaos. Additionally, we propose experimental protocols to test the validity of the modified HUP, evaluating their feasibility with current and near-term quantum technologies. This work highlights the importance of quantum complexity in quantum mechanics and provides a refined perspective on the interplay between complexity, entanglement, and uncertainty in quantum systems. The modified HUP has the potential to stimulate interdisciplinary research at the intersection of quantum physics, information theory, and complexity theory, with significant implications for the development of quantum technologies and the understanding of the quantum-to-classical transition.展开更多
In recent years,with the continuous development of deep learning and knowledge graph reasoning methods,more and more researchers have shown great interest in improving knowledge graph reasoning methods by inferring mi...In recent years,with the continuous development of deep learning and knowledge graph reasoning methods,more and more researchers have shown great interest in improving knowledge graph reasoning methods by inferring missing facts through reasoning.By searching paths on the knowledge graph and making fact and link predictions based on these paths,deep learning-based Reinforcement Learning(RL)agents can demonstrate good performance and interpretability.Therefore,deep reinforcement learning-based knowledge reasoning methods have rapidly emerged in recent years and have become a hot research topic.However,even in a small and fixed knowledge graph reasoning action space,there are still a large number of invalid actions.It often leads to the interruption of RL agents’wandering due to the selection of invalid actions,resulting in a significant decrease in the success rate of path mining.In order to improve the success rate of RL agents in the early stages of path search,this article proposes a knowledge reasoning method based on Deep Transfer Reinforcement Learning path(DTRLpath).Before supervised pre-training and retraining,a pre-task of searching for effective actions in a single step is added.The RL agent is first trained in the pre-task to improve its ability to search for effective actions.Then,the trained agent is transferred to the target reasoning task for path search training,which improves its success rate in searching for target task paths.Finally,based on the comparative experimental results on the FB15K-237 and NELL-995 datasets,it can be concluded that the proposed method significantly improves the success rate of path search and outperforms similar methods in most reasoning tasks.展开更多
The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic me...The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic medical records(EMRs)and KGs into the knowledge reasoning process,ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text.To better integrate EMR text information,we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning(GATiT),which comprises text representation,subgraph construction,knowledge reasoning,and diagnostic classification.In the text representation process,GATiT uses a pre-trained model to obtain text representations of the EMRs and additionally enhances embeddings by including chief complaint information and numerical information in the input.In the subgraph construction process,GATiT constructs text subgraphs and disease subgraphs from the KG,utilizing EMR text and the disease to be diagnosed.To differentiate the varying importance of nodes within the subgraphs features such as node categories,relevance scores,and other relevant factors are introduced into the text subgraph.Themessage-passing strategy and attention weight calculation of the graph attention network are adjusted to learn these features in the knowledge reasoning process.Finally,in the diagnostic classification process,the interactive attention-based fusion method integrates the results of knowledge reasoning with text representations to produce the final diagnosis results.Experimental results on multi-label and single-label EMR datasets demonstrate the model’s superiority over several state-of-theart methods.展开更多
In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and comp...In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and complex structure),the aircraft control system contains several uncertainties,such as imprecision,incompleteness,redundancy and randomness.The information fusion technology is usually used to solve the uncertainty issue,thus improving the sampled data reliability,which can further effectively increase the performance of the fault diagnosis decision-making in the aircraft control system.In this work,we first analyze the uncertainties in the aircraft control system,and also compare different uncertainty quantitative methods.Since the information fusion can eliminate the effects of the uncertainties,it is widely used in the fault diagnosis.Thus,this paper summarizes the recent work in this aera.Furthermore,we analyze the application of information fusion methods in the fault diagnosis of the aircraft control system.Finally,this work identifies existing problems in the use of information fusion for diagnosis and outlines future trends.展开更多
The effectiveness of facial expression recognition(FER)algorithms hinges on the model’s quality and the availability of a substantial amount of labeled expression data.However,labeling large datasets demands signific...The effectiveness of facial expression recognition(FER)algorithms hinges on the model’s quality and the availability of a substantial amount of labeled expression data.However,labeling large datasets demands significant human,time,and financial resources.Although active learning methods have mitigated the dependency on extensive labeled data,a cold-start problem persists in small to medium-sized expression recognition datasets.This issue arises because the initial labeled data often fails to represent the full spectrum of facial expression characteristics.This paper introduces an active learning approach that integrates uncertainty estimation,aiming to improve the precision of facial expression recognition regardless of dataset scale variations.The method is divided into two primary phases.First,the model undergoes self-supervised pre-training using contrastive learning and uncertainty estimation to bolster its feature extraction capabilities.Second,the model is fine-tuned using the prior knowledge obtained from the pre-training phase to significantly improve recognition accuracy.In the pretraining phase,the model employs contrastive learning to extract fundamental feature representations from the complete unlabeled dataset.These features are then weighted through a self-attention mechanism with rank regularization.Subsequently,data from the low-weighted set is relabeled to further refine the model’s feature extraction ability.The pre-trained model is then utilized in active learning to select and label information-rich samples more efficiently.Experimental results demonstrate that the proposed method significantly outperforms existing approaches,achieving an improvement in recognition accuracy of 5.09%and 3.82%over the best existing active learning methods,Margin,and Least Confidence methods,respectively,and a 1.61%improvement compared to the conventional segmented active learning method.展开更多
Strabismus significantly impacts human health as a prevalent ophthalmic condition.Early detection of strabismus is crucial for effective treatment and prognosis.Traditional deep learning models for strabismus detectio...Strabismus significantly impacts human health as a prevalent ophthalmic condition.Early detection of strabismus is crucial for effective treatment and prognosis.Traditional deep learning models for strabismus detection often fail to estimate prediction certainty precisely.This paper employed a Bayesian deep learning algorithm with knowledge distillation,improving the model's performance and uncertainty estimation ability.Trained on 6807 images from two tertiary hospitals,the model showed significantly higher diagnostic accuracy than traditional deep-learning models.Experimental results revealed that knowledge distillation enhanced the Bayesian model’s performance and uncertainty estimation ability.These findings underscore the combined benefits of using Bayesian deep learning algorithms and knowledge distillation,which improve the reliability and accuracy of strabismus diagnostic predictions.展开更多
Recently,intelligent fault diagnosis based on deep learning has been extensively investigated,exhibiting state-of-the-art performance.However,the deep learning model is often not truly trusted by users due to the lack...Recently,intelligent fault diagnosis based on deep learning has been extensively investigated,exhibiting state-of-the-art performance.However,the deep learning model is often not truly trusted by users due to the lack of interpretability of“black box”,which limits its deployment in safety-critical applications.A trusted fault diagnosis system requires that the faults can be accurately diagnosed in most cases,and the human in the deci-sion-making loop can be found to deal with the abnormal situa-tion when the models fail.In this paper,we explore a simplified method for quantifying both aleatoric and epistemic uncertainty in deterministic networks,called SAEU.In SAEU,Multivariate Gaussian distribution is employed in the deep architecture to compensate for the shortcomings of complexity and applicability of Bayesian neural networks.Based on the SAEU,we propose a unified uncertainty-aware deep learning framework(UU-DLF)to realize the grand vision of trustworthy fault diagnosis.Moreover,our UU-DLF effectively embodies the idea of“humans in the loop”,which not only allows for manual intervention in abnor-mal situations of diagnostic models,but also makes correspond-ing improvements on existing models based on traceability analy-sis.Finally,two experiments conducted on the gearbox and aero-engine bevel gears are used to demonstrate the effectiveness of UU-DLF and explore the effective reasons behind.展开更多
Background: Clinical reasoning is an essential skill for nursing students since it is required to solve difficulties that arise in complex clinical settings. However, teaching and learning clinical reasoning skills is...Background: Clinical reasoning is an essential skill for nursing students since it is required to solve difficulties that arise in complex clinical settings. However, teaching and learning clinical reasoning skills is difficult because of its complexity. This study, therefore aimed at exploring the challenges experienced by nurse educators in promoting acquisition of clinical reasoning skills by undergraduate nursing students. Methods: A qualitative exploratory research design was used in this study. The participants were purposively sampled and recruited into the study. Data were collected using semi-structured interview guides. Thematic analysis method was used to analyze the collected data The principles of beneficence, respect of human dignity and justice were observed. Results: The findings have shown that clinical learning environment, lacked material and human resources. The students had no interest to learn the skill. There was also knowledge gap between nurse educators and clinical nurses. Lack of role model was also an issue and limited time exposure. Conclusion: The study revealed that nurse educators encounter various challenges in promoting the acquisition of clinical reasoning skills among undergraduate nursing students. Training institutions and hospitals should periodically revise the curriculum and provide sufficient resources to facilitate effective teaching and learning of clinical reasoning. Nurse educators must also update their knowledge and skills through continuous professional development if they are to transfer the skill effectively.展开更多
This paper proposed an efficient research method for high-dimensional uncertainty quantification of projectile motion in the barrel of a truck-mounted howitzer.Firstly,the dynamic model of projectile motion is establi...This paper proposed an efficient research method for high-dimensional uncertainty quantification of projectile motion in the barrel of a truck-mounted howitzer.Firstly,the dynamic model of projectile motion is established considering the flexible deformation of the barrel and the interaction between the projectile and the barrel.Subsequently,the accuracy of the dynamic model is verified based on the external ballistic projectile attitude test platform.Furthermore,the probability density evolution method(PDEM)is developed to high-dimensional uncertainty quantification of projectile motion.The engineering example highlights the results of the proposed method are consistent with the results obtained by the Monte Carlo Simulation(MCS).Finally,the influence of parameter uncertainty on the projectile disturbance at muzzle under different working conditions is analyzed.The results show that the disturbance of the pitch angular,pitch angular velocity and pitch angular of velocity decreases with the increase of launching angle,and the random parameter ranges of both the projectile and coupling model have similar influence on the disturbance of projectile angular motion at muzzle.展开更多
Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanis...Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanisms and severe disturbances,which make for it difficult to achieve certain practically relevant control goals including emission and economic performances as well as system robustness.To address these challenges,a new robust control scheme based on uncertainty and disturbance estimator(UDE)and model predictive control(MPC)is proposed in this paper.The UDE is used to estimate and dynamically compensate acting disturbances,whereas MPC is deployed for optimal feedback regulation of the resultant dynamics.By viewing the system nonlinearities and unknown dynamics as disturbances,the proposed control framework allows to locally treat the considered nonlinear plant as a linear one.The obtained simulation results confirm that the utilization of UDE makes the tracking error negligibly small,even in the presence of unmodeled dynamics.In the conducted comparison study,the introduced control scheme outperforms both the standard MPC and PID(proportional-integral-derivative)control strategies in terms of transient performance and robustness.Furthermore,the results reveal that a lowpass-filter time constant has a significant effect on the robustness and the convergence range of the tracking error.展开更多
Background: Clinical reasoning is a critical cognitive skill that enables undergraduate nursing students to make clinically sound decisions. A lapse in clinical reasoning can result in unintended harm to patients. The...Background: Clinical reasoning is a critical cognitive skill that enables undergraduate nursing students to make clinically sound decisions. A lapse in clinical reasoning can result in unintended harm to patients. The aim of the study was to assess and compare the levels of clinical reasoning skills between third year and fourth year undergraduate nursing students. Methods: The study utilized a descriptive comparative research design, based on the positivism paradigm. 410 undergraduate nursing students were systematically sampled and recruited into the study. The researchers used the Self-Assessment of Clinical Reflection and Reasoning questionnaire to collect data on clinical reasoning skills from third- and fourth-year nursing students while adhering to ethical principles of human dignity. Descriptive statistics were done to analyse the level of clinical reasoning and an independent sample t-test was performed to compare the clinical reasoning skills of the student. A p value of 0.05 was accepted. Results: The results of the study revealed that the mean clinical reasoning scores of the undergraduate nursing students were knowledge/theory application (M = 3.84;SD = 1.04);decision-making based on experience and evidence (M = 4.09;SD = 1.01);dealing with uncertainty (M = 3.93;SD = 0.87);reflection and reasoning (M = 3.77;SD = 3.88). The mean difference in clinical reasoning skills between third- and fourth-year undergraduate nursing students was not significantly different from an independent sample t-test scores (t = −1.08;p = 0.28);(t = −0.29;p = 0.73);(t = 1.19;p = 0.24);(t = −0.57;p = 0.57). Since the p-value is >0.05, the null hypothesis (H0) “there is no significantno significant difference in clinical reasoning between third year and fourth year undergraduate nursing students”, was accepted. Conclusion: This study has shown that the level of clinical reasoning skills of the undergraduate nursing students was moderate to low. This meant that the teaching methods have not been effective to improve the students clinical reasoning skills. Therefore, the training institutions should revise their curriculum by incorporating new teaching methods like simulation to enhance students’ clinical reasoning skills. In conclusion, evaluating clinical reasoning skills is crucial for addressing healthcare issues, validating teaching methods, and fostering continuous improvement in nursing education.展开更多
Hierarchical Text Classification(HTC)aims to match text to hierarchical labels.Existing methods overlook two critical issues:first,some texts cannot be fully matched to leaf node labels and need to be classified to th...Hierarchical Text Classification(HTC)aims to match text to hierarchical labels.Existing methods overlook two critical issues:first,some texts cannot be fully matched to leaf node labels and need to be classified to the correct parent node instead of treating leaf nodes as the final classification target.Second,error propagation occurs when a misclassification at a parent node propagates down the hierarchy,ultimately leading to inaccurate predictions at the leaf nodes.To address these limitations,we propose an uncertainty-guided HTC depth-aware model called DepthMatch.Specifically,we design an early stopping strategy with uncertainty to identify incomplete matching between text and labels,classifying them into the corresponding parent node labels.This approach allows us to dynamically determine the classification depth by leveraging evidence to quantify and accumulate uncertainty.Experimental results show that the proposed DepthMatch outperforms recent strong baselines on four commonly used public datasets:WOS(Web of Science),RCV1-V2(Reuters Corpus Volume I),AAPD(Arxiv Academic Paper Dataset),and BGC.Notably,on the BGC dataset,it improvesMicro-F1 andMacro-F1 scores by at least 1.09%and 1.74%,respectively.展开更多
The breakdown of the Heisenberg Uncertainty Principle occurs when energies approach the Planck scale, and the corresponding Schwarzschild radius becomes similar to the Compton wavelength. Both of these quantities are ...The breakdown of the Heisenberg Uncertainty Principle occurs when energies approach the Planck scale, and the corresponding Schwarzschild radius becomes similar to the Compton wavelength. Both of these quantities are approximately equal to the Planck length. In this context, we have introduced a model that utilizes a combination of Schwarzschild’s radius and Compton length to quantify the gravitational length of an object. This model has provided a novel perspective in generalizing the uncertainty principle. Furthermore, it has elucidated the significance of the deforming linear parameter β and its range of variation from unity to its maximum value.展开更多
In this paper,a generalized nth-order perturbation method based on the isogeometric boundary element method is proposed for the uncertainty analysis of broadband structural acoustic scattering problems.The Burton-Mill...In this paper,a generalized nth-order perturbation method based on the isogeometric boundary element method is proposed for the uncertainty analysis of broadband structural acoustic scattering problems.The Burton-Miller method is employed to solve the problem of non-unique solutions that may be encountered in the external acoustic field,and the nth-order discretization formulation of the boundary integral equation is derived.In addition,the computation of loop subdivision surfaces and the subdivision rules are introduced.In order to confirm the effectiveness of the algorithm,the computed results are contrasted and analyzed with the results under Monte Carlo simulations(MCs)through several numerical examples.展开更多
Cross entropy is a measure in machine learning and deep learning that assesses the difference between predicted and actual probability distributions. In this study, we propose cross entropy as a performance evaluation...Cross entropy is a measure in machine learning and deep learning that assesses the difference between predicted and actual probability distributions. In this study, we propose cross entropy as a performance evaluation metric for image classifier models and apply it to the CT image classification of lung cancer. A convolutional neural network is employed as the deep neural network (DNN) image classifier, with the residual network (ResNet) 50 chosen as the DNN archi-tecture. The image data used comprise a lung CT image set. Two classification models are built from datasets with varying amounts of data, and lung cancer is categorized into four classes using 10-fold cross-validation. Furthermore, we employ t-distributed stochastic neighbor embedding to visually explain the data distribution after classification. Experimental results demonstrate that cross en-tropy is a highly useful metric for evaluating the reliability of image classifier models. It is noted that for a more comprehensive evaluation of model perfor-mance, combining with other evaluation metrics is considered essential. .展开更多
基金National Key R&D Program of China under Grant Nos.2018YFC1504504 and 2018YFC0809404。
文摘Damage to electrical equipment in an earthquake can lead to power outage of power systems.Seismic fragility analysis is a common method to assess the seismic reliability of electrical equipment.To further guarantee the efficiency of analysis,multi-source uncertainties including the structure itself and seismic excitation need to be considered.A method for seismic fragility analysis that reflects structural and seismic parameter uncertainty was developed in this study.The proposed method used a random sampling method based on Latin hypercube sampling(LHS)to account for the structure parameter uncertainty and the group structure characteristics of electrical equipment.Then,logistic Lasso regression(LLR)was used to find the seismic fragility surface based on double ground motion intensity measures(IM).The seismic fragility based on the finite element model of an±1000 kV main transformer(UHVMT)was analyzed using the proposed method.The results show that the seismic fragility function obtained by this method can be used to construct the relationship between the uncertainty parameters and the failure probability.The seismic fragility surface did not only provide the probabilities of seismic damage states under different IMs,but also had better stability than the fragility curve.Furthermore,the sensitivity analysis of the structural parameters revealed that the elastic module of the bushing and the height of the high-voltage bushing may have a greater influence.
基金The authors gratefully acknowledge the support from the National Natural Science Foundation of China(Grant No.42377174)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2022ME198)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z020006).
文摘Uncertainty is an essentially challenging for safe construction and long-term stability of geotechnical engineering.The inverse analysis is commonly utilized to determine the physico-mechanical parameters.However,conventional inverse analysis cannot deal with uncertainty in geotechnical and geological systems.In this study,a framework was developed to evaluate and quantify uncertainty in inverse analysis based on the reduced-order model(ROM)and probabilistic programming.The ROM was utilized to capture the mechanical and deformation properties of surrounding rock mass in geomechanical problems.Probabilistic programming was employed to evaluate uncertainty during construction in geotechnical engineering.A circular tunnel was then used to illustrate the proposed framework using analytical and numerical solution.The results show that the geomechanical parameters and associated uncertainty can be properly obtained and the proposed framework can capture the mechanical behaviors under uncertainty.Then,a slope case was employed to demonstrate the performance of the developed framework.The results prove that the proposed framework provides a scientific,feasible,and effective tool to characterize the properties and physical mechanism of geomaterials under uncertainty in geotechnical engineering problems.
基金supported by the National Natural Science Foundation of China(Grant Nos.11472137 and U2141246)。
文摘In this paper,a dynamic modeling method of motor driven electromechanical system is presented,and the uncertainty quantification of mechanism motion is investigated based on this method.The main contribution is to propose a novel mechanism-motor coupling dynamic modeling method,in which the relationship between mechanism motion and motor rotation is established according to the geometric coordination of the system.The advantages of this include establishing intuitive coupling between the mechanism and motor,facilitating the discussion for the influence of both mechanical and electrical parameters on the mechanism,and enabling dynamic simulation with controller to take the randomness of the electric load into account.Dynamic simulation considering feedback control of ammunition delivery system is carried out,and the feasibility of the model is verified experimentally.Based on probability density evolution theory,we comprehensively discuss the effects of system parameters on mechanism motion from the perspective of uncertainty quantization.Our work can not only provide guidance for engineering design of ammunition delivery mechanism,but also provide theoretical support for modeling and uncertainty quantification research of mechatronics system.
基金supported by the Laboratory Directed Research&Development(LDRD)program at the Los Alamos National Laboratory(LANL)(Grant No.20220019DR).
文摘Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of underground nuclear explosions(UNEs).However,the migration of signature radionuclide gases between the nuclear cavity and surface is not well understood because complex processes are involved,including the generation of complex fracture networks,reactivation of natural fractures and faults,and thermo-hydro-mechanical-chemical(THMC)coupling of radionuclide gas transport in the subsurface.In this study,we provide an experimental investigation of hydro-mechanical(HM)coupling among gas flow,stress states,rock deformation,and rock damage using a unique multi-physics triaxial direct shear rock testing system.The testing system also features redundant gas pressure and flow rate measurements,well suited for parameter uncertainty quantification.Using porous tuff and tight granite samples that are relevant to historic UNE tests,we measured the Biot effective stress coefficient,rock matrix gas permeability,and fracture gas permeability at a range of pore pressure and stress conditions.The Biot effective stress coefficient varies from 0.69 to 1 for the tuff,whose porosity averages 35.3%±0.7%,while this coefficient varies from 0.51 to 0.78 for the tight granite(porosity<1%,perhaps an underestimate).Matrix gas permeability is strongly correlated to effective stress for the granite,but not for the porous tuff.Our experiments reveal the following key engineering implications on transport of radionuclide gases post a UNE event:(1)The porous tuff shows apparent fracture dilation or compression upon stress changes,which does not necessarily change the gas permeability;(2)The granite fracture permeability shows strong stress sensitivity and is positively related to shear displacement;and(3)Hydromechanical coupling among stress states,rock damage,and gas flow appears to be stronger in tight granite than in porous tuff.
文摘Reasoning theories are divided into certainty reasoning theories and uncertainty reasoning theories. Now, only certainty reasoning theories are used to detect and diagnose satellite faults. However, in practice, it is difficult to detect and diagnose some faults of the satellite automatically only by use of certainty reasoning theories. The reason is that detection and diagnosis of these faults require a rational reasoning and a fault tolerant capability. Fortunately, uncertainty reasoning theories can meet these requirements. It is attracting attention of many experts in the space field all over the world that uncertainty reasoning theories are applied to detect and diagnose satellite faults. Uncertainty reasoning theories include several kinds of theories, such as inclusion degree theory, rough set theory, evidence reasoning theory, probabilistic reasoning theory, fuzzy reasoning theory, and so on. Inclusion degree theory, rough set theory and evidence reasoning theory are three advanced ones. Based on these three theories respectively, the author introduces three new methods to detect and diagnose satellite faults in this paper. It is shown that the methods, suitable for detecting and diagnosing satellite faults, especially uncertainty faults, can remedy the defects of the current methods.
文摘This work introduces a modification to the Heisenberg Uncertainty Principle (HUP) by incorporating quantum complexity, including potential nonlinear effects. Our theoretical framework extends the traditional HUP to consider the complexity of quantum states, offering a more nuanced understanding of measurement precision. By adding a complexity term to the uncertainty relation, we explore nonlinear modifications such as polynomial, exponential, and logarithmic functions. Rigorous mathematical derivations demonstrate the consistency of the modified principle with classical quantum mechanics and quantum information theory. We investigate the implications of this modified HUP for various aspects of quantum mechanics, including quantum metrology, quantum algorithms, quantum error correction, and quantum chaos. Additionally, we propose experimental protocols to test the validity of the modified HUP, evaluating their feasibility with current and near-term quantum technologies. This work highlights the importance of quantum complexity in quantum mechanics and provides a refined perspective on the interplay between complexity, entanglement, and uncertainty in quantum systems. The modified HUP has the potential to stimulate interdisciplinary research at the intersection of quantum physics, information theory, and complexity theory, with significant implications for the development of quantum technologies and the understanding of the quantum-to-classical transition.
基金supported by Key Laboratory of Information System Requirement,No.LHZZ202202Natural Science Foundation of Xinjiang Uyghur Autonomous Region(2023D01C55)Scientific Research Program of the Higher Education Institution of Xinjiang(XJEDU2023P127).
文摘In recent years,with the continuous development of deep learning and knowledge graph reasoning methods,more and more researchers have shown great interest in improving knowledge graph reasoning methods by inferring missing facts through reasoning.By searching paths on the knowledge graph and making fact and link predictions based on these paths,deep learning-based Reinforcement Learning(RL)agents can demonstrate good performance and interpretability.Therefore,deep reinforcement learning-based knowledge reasoning methods have rapidly emerged in recent years and have become a hot research topic.However,even in a small and fixed knowledge graph reasoning action space,there are still a large number of invalid actions.It often leads to the interruption of RL agents’wandering due to the selection of invalid actions,resulting in a significant decrease in the success rate of path mining.In order to improve the success rate of RL agents in the early stages of path search,this article proposes a knowledge reasoning method based on Deep Transfer Reinforcement Learning path(DTRLpath).Before supervised pre-training and retraining,a pre-task of searching for effective actions in a single step is added.The RL agent is first trained in the pre-task to improve its ability to search for effective actions.Then,the trained agent is transferred to the target reasoning task for path search training,which improves its success rate in searching for target task paths.Finally,based on the comparative experimental results on the FB15K-237 and NELL-995 datasets,it can be concluded that the proposed method significantly improves the success rate of path search and outperforms similar methods in most reasoning tasks.
基金supported in part by the Science and Technology Innovation 2030-“New Generation of Artificial Intelligence”Major Project(No.2021ZD0111000)Henan Provincial Science and Technology Research Project(No.232102211039).
文摘The growing prevalence of knowledge reasoning using knowledge graphs(KGs)has substantially improved the accuracy and efficiency of intelligent medical diagnosis.However,current models primarily integrate electronic medical records(EMRs)and KGs into the knowledge reasoning process,ignoring the differing significance of various types of knowledge in EMRs and the diverse data types present in the text.To better integrate EMR text information,we propose a novel intelligent diagnostic model named the Graph ATtention network incorporating Text representation in knowledge reasoning(GATiT),which comprises text representation,subgraph construction,knowledge reasoning,and diagnostic classification.In the text representation process,GATiT uses a pre-trained model to obtain text representations of the EMRs and additionally enhances embeddings by including chief complaint information and numerical information in the input.In the subgraph construction process,GATiT constructs text subgraphs and disease subgraphs from the KG,utilizing EMR text and the disease to be diagnosed.To differentiate the varying importance of nodes within the subgraphs features such as node categories,relevance scores,and other relevant factors are introduced into the text subgraph.Themessage-passing strategy and attention weight calculation of the graph attention network are adjusted to learn these features in the knowledge reasoning process.Finally,in the diagnostic classification process,the interactive attention-based fusion method integrates the results of knowledge reasoning with text representations to produce the final diagnosis results.Experimental results on multi-label and single-label EMR datasets demonstrate the model’s superiority over several state-of-theart methods.
基金supported by the National Natural Science Foundation of China(62273176)the Aeronautical Science Foundation of China(20200007018001)the China Scholarship Council(202306830096).
文摘In the aircraft control system,sensor networks are used to sample the attitude and environmental data.As a result of the external and internal factors(e.g.,environmental and task complexity,inaccurate sensing and complex structure),the aircraft control system contains several uncertainties,such as imprecision,incompleteness,redundancy and randomness.The information fusion technology is usually used to solve the uncertainty issue,thus improving the sampled data reliability,which can further effectively increase the performance of the fault diagnosis decision-making in the aircraft control system.In this work,we first analyze the uncertainties in the aircraft control system,and also compare different uncertainty quantitative methods.Since the information fusion can eliminate the effects of the uncertainties,it is widely used in the fault diagnosis.Thus,this paper summarizes the recent work in this aera.Furthermore,we analyze the application of information fusion methods in the fault diagnosis of the aircraft control system.Finally,this work identifies existing problems in the use of information fusion for diagnosis and outlines future trends.
基金supported by National Science Foundation of China(61971078)Chongqing Municipal Education Commission Science and Technology Major Project(KJZDM202301901).
文摘The effectiveness of facial expression recognition(FER)algorithms hinges on the model’s quality and the availability of a substantial amount of labeled expression data.However,labeling large datasets demands significant human,time,and financial resources.Although active learning methods have mitigated the dependency on extensive labeled data,a cold-start problem persists in small to medium-sized expression recognition datasets.This issue arises because the initial labeled data often fails to represent the full spectrum of facial expression characteristics.This paper introduces an active learning approach that integrates uncertainty estimation,aiming to improve the precision of facial expression recognition regardless of dataset scale variations.The method is divided into two primary phases.First,the model undergoes self-supervised pre-training using contrastive learning and uncertainty estimation to bolster its feature extraction capabilities.Second,the model is fine-tuned using the prior knowledge obtained from the pre-training phase to significantly improve recognition accuracy.In the pretraining phase,the model employs contrastive learning to extract fundamental feature representations from the complete unlabeled dataset.These features are then weighted through a self-attention mechanism with rank regularization.Subsequently,data from the low-weighted set is relabeled to further refine the model’s feature extraction ability.The pre-trained model is then utilized in active learning to select and label information-rich samples more efficiently.Experimental results demonstrate that the proposed method significantly outperforms existing approaches,achieving an improvement in recognition accuracy of 5.09%and 3.82%over the best existing active learning methods,Margin,and Least Confidence methods,respectively,and a 1.61%improvement compared to the conventional segmented active learning method.
基金supported in part by the Guangdong Natu-ral Science Foundation(No.2022A1515011396)in part by the National Key R and D Program of China(No.2021ZD0111502)in part by the Science Research Startup Foundation of Shantou University(No.NTF20021)。
文摘Strabismus significantly impacts human health as a prevalent ophthalmic condition.Early detection of strabismus is crucial for effective treatment and prognosis.Traditional deep learning models for strabismus detection often fail to estimate prediction certainty precisely.This paper employed a Bayesian deep learning algorithm with knowledge distillation,improving the model's performance and uncertainty estimation ability.Trained on 6807 images from two tertiary hospitals,the model showed significantly higher diagnostic accuracy than traditional deep-learning models.Experimental results revealed that knowledge distillation enhanced the Bayesian model’s performance and uncertainty estimation ability.These findings underscore the combined benefits of using Bayesian deep learning algorithms and knowledge distillation,which improve the reliability and accuracy of strabismus diagnostic predictions.
基金supported in part by the National Natural Science Foundation of China(52105116)Science Center for gas turbine project(P2022-DC-I-003-001)the Royal Society award(IEC\NSFC\223294)to Professor Asoke K.Nandi.
文摘Recently,intelligent fault diagnosis based on deep learning has been extensively investigated,exhibiting state-of-the-art performance.However,the deep learning model is often not truly trusted by users due to the lack of interpretability of“black box”,which limits its deployment in safety-critical applications.A trusted fault diagnosis system requires that the faults can be accurately diagnosed in most cases,and the human in the deci-sion-making loop can be found to deal with the abnormal situa-tion when the models fail.In this paper,we explore a simplified method for quantifying both aleatoric and epistemic uncertainty in deterministic networks,called SAEU.In SAEU,Multivariate Gaussian distribution is employed in the deep architecture to compensate for the shortcomings of complexity and applicability of Bayesian neural networks.Based on the SAEU,we propose a unified uncertainty-aware deep learning framework(UU-DLF)to realize the grand vision of trustworthy fault diagnosis.Moreover,our UU-DLF effectively embodies the idea of“humans in the loop”,which not only allows for manual intervention in abnor-mal situations of diagnostic models,but also makes correspond-ing improvements on existing models based on traceability analy-sis.Finally,two experiments conducted on the gearbox and aero-engine bevel gears are used to demonstrate the effectiveness of UU-DLF and explore the effective reasons behind.
文摘Background: Clinical reasoning is an essential skill for nursing students since it is required to solve difficulties that arise in complex clinical settings. However, teaching and learning clinical reasoning skills is difficult because of its complexity. This study, therefore aimed at exploring the challenges experienced by nurse educators in promoting acquisition of clinical reasoning skills by undergraduate nursing students. Methods: A qualitative exploratory research design was used in this study. The participants were purposively sampled and recruited into the study. Data were collected using semi-structured interview guides. Thematic analysis method was used to analyze the collected data The principles of beneficence, respect of human dignity and justice were observed. Results: The findings have shown that clinical learning environment, lacked material and human resources. The students had no interest to learn the skill. There was also knowledge gap between nurse educators and clinical nurses. Lack of role model was also an issue and limited time exposure. Conclusion: The study revealed that nurse educators encounter various challenges in promoting the acquisition of clinical reasoning skills among undergraduate nursing students. Training institutions and hospitals should periodically revise the curriculum and provide sufficient resources to facilitate effective teaching and learning of clinical reasoning. Nurse educators must also update their knowledge and skills through continuous professional development if they are to transfer the skill effectively.
基金the National Natural Science Foundation of China(Grant No.11472137).
文摘This paper proposed an efficient research method for high-dimensional uncertainty quantification of projectile motion in the barrel of a truck-mounted howitzer.Firstly,the dynamic model of projectile motion is established considering the flexible deformation of the barrel and the interaction between the projectile and the barrel.Subsequently,the accuracy of the dynamic model is verified based on the external ballistic projectile attitude test platform.Furthermore,the probability density evolution method(PDEM)is developed to high-dimensional uncertainty quantification of projectile motion.The engineering example highlights the results of the proposed method are consistent with the results obtained by the Monte Carlo Simulation(MCS).Finally,the influence of parameter uncertainty on the projectile disturbance at muzzle under different working conditions is analyzed.The results show that the disturbance of the pitch angular,pitch angular velocity and pitch angular of velocity decreases with the increase of launching angle,and the random parameter ranges of both the projectile and coupling model have similar influence on the disturbance of projectile angular motion at muzzle.
基金supported by the key project of the National Nature Science Foundation of China(51736002).
文摘Wet flue gas desulphurization technology is widely used in the industrial process for its capability of efficient pollution removal.The desulphurization control system,however,is subjected to complex reaction mechanisms and severe disturbances,which make for it difficult to achieve certain practically relevant control goals including emission and economic performances as well as system robustness.To address these challenges,a new robust control scheme based on uncertainty and disturbance estimator(UDE)and model predictive control(MPC)is proposed in this paper.The UDE is used to estimate and dynamically compensate acting disturbances,whereas MPC is deployed for optimal feedback regulation of the resultant dynamics.By viewing the system nonlinearities and unknown dynamics as disturbances,the proposed control framework allows to locally treat the considered nonlinear plant as a linear one.The obtained simulation results confirm that the utilization of UDE makes the tracking error negligibly small,even in the presence of unmodeled dynamics.In the conducted comparison study,the introduced control scheme outperforms both the standard MPC and PID(proportional-integral-derivative)control strategies in terms of transient performance and robustness.Furthermore,the results reveal that a lowpass-filter time constant has a significant effect on the robustness and the convergence range of the tracking error.
文摘Background: Clinical reasoning is a critical cognitive skill that enables undergraduate nursing students to make clinically sound decisions. A lapse in clinical reasoning can result in unintended harm to patients. The aim of the study was to assess and compare the levels of clinical reasoning skills between third year and fourth year undergraduate nursing students. Methods: The study utilized a descriptive comparative research design, based on the positivism paradigm. 410 undergraduate nursing students were systematically sampled and recruited into the study. The researchers used the Self-Assessment of Clinical Reflection and Reasoning questionnaire to collect data on clinical reasoning skills from third- and fourth-year nursing students while adhering to ethical principles of human dignity. Descriptive statistics were done to analyse the level of clinical reasoning and an independent sample t-test was performed to compare the clinical reasoning skills of the student. A p value of 0.05 was accepted. Results: The results of the study revealed that the mean clinical reasoning scores of the undergraduate nursing students were knowledge/theory application (M = 3.84;SD = 1.04);decision-making based on experience and evidence (M = 4.09;SD = 1.01);dealing with uncertainty (M = 3.93;SD = 0.87);reflection and reasoning (M = 3.77;SD = 3.88). The mean difference in clinical reasoning skills between third- and fourth-year undergraduate nursing students was not significantly different from an independent sample t-test scores (t = −1.08;p = 0.28);(t = −0.29;p = 0.73);(t = 1.19;p = 0.24);(t = −0.57;p = 0.57). Since the p-value is >0.05, the null hypothesis (H0) “there is no significantno significant difference in clinical reasoning between third year and fourth year undergraduate nursing students”, was accepted. Conclusion: This study has shown that the level of clinical reasoning skills of the undergraduate nursing students was moderate to low. This meant that the teaching methods have not been effective to improve the students clinical reasoning skills. Therefore, the training institutions should revise their curriculum by incorporating new teaching methods like simulation to enhance students’ clinical reasoning skills. In conclusion, evaluating clinical reasoning skills is crucial for addressing healthcare issues, validating teaching methods, and fostering continuous improvement in nursing education.
基金sponsored by the National Key Research and Development Program of China(No.2021YFF0704100)the National Natural Science Foundation of China(No.62136002)+1 种基金the Chongqing Natural Science Foundation(No.cstc2022ycjh-bgzxm0004)the Science and Technology Commission of Chongqing Municipality(CSTB2023NSCQ-LZX0006),respectively.
文摘Hierarchical Text Classification(HTC)aims to match text to hierarchical labels.Existing methods overlook two critical issues:first,some texts cannot be fully matched to leaf node labels and need to be classified to the correct parent node instead of treating leaf nodes as the final classification target.Second,error propagation occurs when a misclassification at a parent node propagates down the hierarchy,ultimately leading to inaccurate predictions at the leaf nodes.To address these limitations,we propose an uncertainty-guided HTC depth-aware model called DepthMatch.Specifically,we design an early stopping strategy with uncertainty to identify incomplete matching between text and labels,classifying them into the corresponding parent node labels.This approach allows us to dynamically determine the classification depth by leveraging evidence to quantify and accumulate uncertainty.Experimental results show that the proposed DepthMatch outperforms recent strong baselines on four commonly used public datasets:WOS(Web of Science),RCV1-V2(Reuters Corpus Volume I),AAPD(Arxiv Academic Paper Dataset),and BGC.Notably,on the BGC dataset,it improvesMicro-F1 andMacro-F1 scores by at least 1.09%and 1.74%,respectively.
文摘The breakdown of the Heisenberg Uncertainty Principle occurs when energies approach the Planck scale, and the corresponding Schwarzschild radius becomes similar to the Compton wavelength. Both of these quantities are approximately equal to the Planck length. In this context, we have introduced a model that utilizes a combination of Schwarzschild’s radius and Compton length to quantify the gravitational length of an object. This model has provided a novel perspective in generalizing the uncertainty principle. Furthermore, it has elucidated the significance of the deforming linear parameter β and its range of variation from unity to its maximum value.
基金sponsored by the Graduate Student Research and Innovation Fund of Xinyang Normal University under No.2024KYJJ012.
文摘In this paper,a generalized nth-order perturbation method based on the isogeometric boundary element method is proposed for the uncertainty analysis of broadband structural acoustic scattering problems.The Burton-Miller method is employed to solve the problem of non-unique solutions that may be encountered in the external acoustic field,and the nth-order discretization formulation of the boundary integral equation is derived.In addition,the computation of loop subdivision surfaces and the subdivision rules are introduced.In order to confirm the effectiveness of the algorithm,the computed results are contrasted and analyzed with the results under Monte Carlo simulations(MCs)through several numerical examples.
文摘Cross entropy is a measure in machine learning and deep learning that assesses the difference between predicted and actual probability distributions. In this study, we propose cross entropy as a performance evaluation metric for image classifier models and apply it to the CT image classification of lung cancer. A convolutional neural network is employed as the deep neural network (DNN) image classifier, with the residual network (ResNet) 50 chosen as the DNN archi-tecture. The image data used comprise a lung CT image set. Two classification models are built from datasets with varying amounts of data, and lung cancer is categorized into four classes using 10-fold cross-validation. Furthermore, we employ t-distributed stochastic neighbor embedding to visually explain the data distribution after classification. Experimental results demonstrate that cross en-tropy is a highly useful metric for evaluating the reliability of image classifier models. It is noted that for a more comprehensive evaluation of model perfor-mance, combining with other evaluation metrics is considered essential. .