With the continued development of multiple Global Navigation Satellite Systems(GNSS)and the emergence of various frequencies,UnDifferenced and UnCombined(UDUC)data processing has become an increasingly attractive opti...With the continued development of multiple Global Navigation Satellite Systems(GNSS)and the emergence of various frequencies,UnDifferenced and UnCombined(UDUC)data processing has become an increasingly attractive option.In this contribution,we provide an overview of the current status of UDUC GNSS data processing activities in China.These activities encompass the formulation of Precise Point Positioning(PPP)models and PPP-Real-Time Kinematic(PPP-RTK)models for processing single-station and multi-station GNSS data,respectively.Regarding single-station data processing,we discuss the advancements in PPP models,particularly the extension from a single system to multiple systems,and from dual frequencies to single and multiple frequencies.Additionally,we introduce the modified PPP model,which accounts for the time variation of receiver code biases,a departure from the conventional PPP model that typically assumes these biases to be time-constant.In the realm of multi-station PPP-RTK data processing,we introduce the ionosphere-weighted PPP-RTK model,which enhances the model strength by considering the spatial correlation of ionospheric delays.We also review the phase-only PPP-RTK model,designed to mitigate the impact of unmodelled code-related errors.Furthermore,we explore GLONASS PPP-RTK,achieved through the application of the integer-estimable model.For large-scale network data processing,we introduce the all-in-view PPP-RTK model,which alleviates the strict common-view requirement at all receivers.Moreover,we present the decentralized PPP-RTK data processing strategy,designed to improve computational efficiency.Overall,this work highlights the various advancements in UDUC GNSS data processing,providing insights into the state-of-the-art techniques employed in China to achieve precise GNSS applications.展开更多
Technique PPP-RTK combines the advantages of both the Precise Point Positioning(PPP)and the Real-Time Kinematic(RTK)positioning.With the emergence of multi-frequency Global Navigation Satellite System(GNSS)observation...Technique PPP-RTK combines the advantages of both the Precise Point Positioning(PPP)and the Real-Time Kinematic(RTK)positioning.With the emergence of multi-frequency Global Navigation Satellite System(GNSS)observations,it is preferable to formulate PPP-RTK functional models based on original(undiferenced and uncombined)observations.While there exist many variants of the undiferenced and uncombined PPP–RTK models,a unifed theoretical framework needs developing to link these variants.In this contribution,we formulate a class of undiferenced and uncombined PPP-RTK functional models in a systematic way and cast them in a unifed framework.This framework classifes the models into a code-plus-phase category and a phase-only category.Each category covers a variety of measurement scenarios on the network side,ranging from small-,medium-to large-scale networks.For each scenario,special care has been taken of the distinct ionospheric constraints and the diference between Code Division Multiple Access(CDMA)and Frequency Division Multiple Access(FDMA)signals.The key to systematically formulating these models lies in how to deal with the rank defciency problems encountered.We opt for the Singularity-basis(S-basis)theory,giving rise to the full-rank observation equations in which the estimable parameters turn out to be the functions of original parameters and those selected as the S-basis.In the sequel,it becomes straightforward to derive for each scenario the user model as it,more or less,amounts to the single-receiver network model.Benefting from the presented theoretical framework,the relationships and diferences between various undiferenced and uncombined PPP-RTK models become clear,which can lead to the better use of these models in a specifc situation.展开更多
There is increasing concern about the uncombined(UC)observation model in the field of global navigation satellite system(GNSS).Based on the global positioning system(GPS)and the third-generation BeiDou navigation sate...There is increasing concern about the uncombined(UC)observation model in the field of global navigation satellite system(GNSS).Based on the global positioning system(GPS)and the third-generation BeiDou navigation satellite system(BDS-3),this study processed the UC precision orbit determination(POD)for single and dual systems.First,a UC observation model suitable for multi-GNSS POD was derived,and the ionospheric-free(IF)combination observation model was presented.Although the ambiguity parameters of UC and IF strategies were different after reparameterization,the difference could be removed when processing ambiguity resolution,and the equivalence was proved theoretically.To demonstrate the accuracy of BDS-3 orbits fully,the observation data of approximately 1 month were selected for determining the precise orbit for global positioning system(GPS)only,BDS-3 only,and GPS/BDS-3 systems based on the UC and IF models.The orbit precision of BDS-3 satellites was validated by using metrics,including comparison with precision products released by Wuhan University,orbit boundary discontinuity,and satellite laser ranging(SLR)residuals.The results show that the orbit accuracies of the IF and UC models are almost the same,the difference in orbits is approximately several millimeters,and the clock difference is within 0.01 ns.The GPS/BDS-3 combined solution shows better accuracy compared to other solutions.The average accuracies in the R and 3D directions are approximately 4 and 15 cm,and the clock standard deviation is approximately 0.2 ns compared to external orbit product.The root mean square of SLR residuals is approximately 4 cm.展开更多
Ionospheric delay modeling is not only important for Global Navigation Satellite System(GNSS)based space weather study and monitoring,but also an efficient tool to speed up the convergence time of Precise Point Positi...Ionospheric delay modeling is not only important for Global Navigation Satellite System(GNSS)based space weather study and monitoring,but also an efficient tool to speed up the convergence time of Precise Point Positioning(PPP).In this study,a novel model,denoted as Quasi-4-Dimension Ionospheric Modeling(Q4DIM)is proposed for wide-area high precision ionospheric delay correction.In Q4DIM,the Line Of Sight(LOS)ionospheric delays from a GNSS station network are divided into different clusters according to not only the location of latitude and longitude,but also satellite elevation and azimuth.Both Global Ionosphere Map(GIM)and Slant Ionospheric Delay(SID)models that are traditionally used for wide-area and regional ionospheric delay modeling,respectively,can be regarded as the special cases of Q4DIM by defining proper grids in latitude,longitude,elevation,and azimuth.Thus,Q4DIM presents a resilient model that is capable for both wide-area coverage and high precision.Four different sets of clusters are defined to illustrate the properties of Q4DIM based on 200 EUREF Permanent Network(EPN)stations.The results indicate that Q4DIM is compatible with the GIM products.Moreover,it is proved that by inducting the elevation and azimuth angle dependent residuals,the precision of the 2-dimensional GIM-like model,i.e.,Q4DIM 2-Dimensional(Q4DIM-2D),is improved from around 1.5 Total Electron Content Units(TECU)to better than 0.5 TECU.In addition,treating Q4DIM as a 4-dimensional matrix in latitude,longitude,elevation,and azimuth,whose sparsity is less than 5%,can result in its feasibility in a bandwidth-sensitive applications,e.g.,satellite-based Precising Point Positioning Real-Time Kinematic(PPP-RTK)service.Finally,the advantages of Q4DIM in PPP over the 2-dimensional models are demonstrated with the one month's data from 30 EPN stations in both high solar activity year 2014 and low solar activity year 2020.展开更多
基金National Natural Science Foundation of China(No.42022025)。
文摘With the continued development of multiple Global Navigation Satellite Systems(GNSS)and the emergence of various frequencies,UnDifferenced and UnCombined(UDUC)data processing has become an increasingly attractive option.In this contribution,we provide an overview of the current status of UDUC GNSS data processing activities in China.These activities encompass the formulation of Precise Point Positioning(PPP)models and PPP-Real-Time Kinematic(PPP-RTK)models for processing single-station and multi-station GNSS data,respectively.Regarding single-station data processing,we discuss the advancements in PPP models,particularly the extension from a single system to multiple systems,and from dual frequencies to single and multiple frequencies.Additionally,we introduce the modified PPP model,which accounts for the time variation of receiver code biases,a departure from the conventional PPP model that typically assumes these biases to be time-constant.In the realm of multi-station PPP-RTK data processing,we introduce the ionosphere-weighted PPP-RTK model,which enhances the model strength by considering the spatial correlation of ionospheric delays.We also review the phase-only PPP-RTK model,designed to mitigate the impact of unmodelled code-related errors.Furthermore,we explore GLONASS PPP-RTK,achieved through the application of the integer-estimable model.For large-scale network data processing,we introduce the all-in-view PPP-RTK model,which alleviates the strict common-view requirement at all receivers.Moreover,we present the decentralized PPP-RTK data processing strategy,designed to improve computational efficiency.Overall,this work highlights the various advancements in UDUC GNSS data processing,providing insights into the state-of-the-art techniques employed in China to achieve precise GNSS applications.
基金This work was partially funded by the National Natural Science Foundation of China(Grant Nos.41774042,42174034)the Key Research and Development Plan of Hubei Province(Grant No.2020BHB014)+1 种基金the Scientifc Instrument Developing Project of the Chinese Academy of Sciences(Grant No.YJKYYQ20190063)The frst author is supported by the CAS Pioneer Hundred Talents Program。
文摘Technique PPP-RTK combines the advantages of both the Precise Point Positioning(PPP)and the Real-Time Kinematic(RTK)positioning.With the emergence of multi-frequency Global Navigation Satellite System(GNSS)observations,it is preferable to formulate PPP-RTK functional models based on original(undiferenced and uncombined)observations.While there exist many variants of the undiferenced and uncombined PPP–RTK models,a unifed theoretical framework needs developing to link these variants.In this contribution,we formulate a class of undiferenced and uncombined PPP-RTK functional models in a systematic way and cast them in a unifed framework.This framework classifes the models into a code-plus-phase category and a phase-only category.Each category covers a variety of measurement scenarios on the network side,ranging from small-,medium-to large-scale networks.For each scenario,special care has been taken of the distinct ionospheric constraints and the diference between Code Division Multiple Access(CDMA)and Frequency Division Multiple Access(FDMA)signals.The key to systematically formulating these models lies in how to deal with the rank defciency problems encountered.We opt for the Singularity-basis(S-basis)theory,giving rise to the full-rank observation equations in which the estimable parameters turn out to be the functions of original parameters and those selected as the S-basis.In the sequel,it becomes straightforward to derive for each scenario the user model as it,more or less,amounts to the single-receiver network model.Benefting from the presented theoretical framework,the relationships and diferences between various undiferenced and uncombined PPP-RTK models become clear,which can lead to the better use of these models in a specifc situation.
基金National Natural Science Foundation of China(Grant Nos.41674016,41874041,41704035,41904039)by State Key Laboratory of Geo-Information Engineering,NO.SKLGIE2018-M-2-1.
文摘There is increasing concern about the uncombined(UC)observation model in the field of global navigation satellite system(GNSS).Based on the global positioning system(GPS)and the third-generation BeiDou navigation satellite system(BDS-3),this study processed the UC precision orbit determination(POD)for single and dual systems.First,a UC observation model suitable for multi-GNSS POD was derived,and the ionospheric-free(IF)combination observation model was presented.Although the ambiguity parameters of UC and IF strategies were different after reparameterization,the difference could be removed when processing ambiguity resolution,and the equivalence was proved theoretically.To demonstrate the accuracy of BDS-3 orbits fully,the observation data of approximately 1 month were selected for determining the precise orbit for global positioning system(GPS)only,BDS-3 only,and GPS/BDS-3 systems based on the UC and IF models.The orbit precision of BDS-3 satellites was validated by using metrics,including comparison with precision products released by Wuhan University,orbit boundary discontinuity,and satellite laser ranging(SLR)residuals.The results show that the orbit accuracies of the IF and UC models are almost the same,the difference in orbits is approximately several millimeters,and the clock difference is within 0.01 ns.The GPS/BDS-3 combined solution shows better accuracy compared to other solutions.The average accuracies in the R and 3D directions are approximately 4 and 15 cm,and the clock standard deviation is approximately 0.2 ns compared to external orbit product.The root mean square of SLR residuals is approximately 4 cm.
基金National Natural Science Foundation of China(42174029).
文摘Ionospheric delay modeling is not only important for Global Navigation Satellite System(GNSS)based space weather study and monitoring,but also an efficient tool to speed up the convergence time of Precise Point Positioning(PPP).In this study,a novel model,denoted as Quasi-4-Dimension Ionospheric Modeling(Q4DIM)is proposed for wide-area high precision ionospheric delay correction.In Q4DIM,the Line Of Sight(LOS)ionospheric delays from a GNSS station network are divided into different clusters according to not only the location of latitude and longitude,but also satellite elevation and azimuth.Both Global Ionosphere Map(GIM)and Slant Ionospheric Delay(SID)models that are traditionally used for wide-area and regional ionospheric delay modeling,respectively,can be regarded as the special cases of Q4DIM by defining proper grids in latitude,longitude,elevation,and azimuth.Thus,Q4DIM presents a resilient model that is capable for both wide-area coverage and high precision.Four different sets of clusters are defined to illustrate the properties of Q4DIM based on 200 EUREF Permanent Network(EPN)stations.The results indicate that Q4DIM is compatible with the GIM products.Moreover,it is proved that by inducting the elevation and azimuth angle dependent residuals,the precision of the 2-dimensional GIM-like model,i.e.,Q4DIM 2-Dimensional(Q4DIM-2D),is improved from around 1.5 Total Electron Content Units(TECU)to better than 0.5 TECU.In addition,treating Q4DIM as a 4-dimensional matrix in latitude,longitude,elevation,and azimuth,whose sparsity is less than 5%,can result in its feasibility in a bandwidth-sensitive applications,e.g.,satellite-based Precising Point Positioning Real-Time Kinematic(PPP-RTK)service.Finally,the advantages of Q4DIM in PPP over the 2-dimensional models are demonstrated with the one month's data from 30 EPN stations in both high solar activity year 2014 and low solar activity year 2020.