The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective meth...The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective method to improve oil recovery factor from unconventional oil reservoirs. Hydrocarbon gas huff-n-puff becomes preferable when the CO_(2) source is limited. However, the impact of complex fracture networks and well interference on the EOR performance of multiple MFHWs is still unclear. The optimal gas huff-n-puff parameters are significant for enhancing oil recovery. This work aims to optimize the hydrocarbon gas injection and production parameters for multiple MFHWs with complex fracture networks in unconventional oil reservoirs. Firstly, the numerical model based on unstructured grids is developed to characterize the complex fracture networks and capture the dynamic fracture features.Secondly, the PVT phase behavior simulation was carried out to provide the fluid model for numerical simulation. Thirdly, the optimal parameters for hydrocarbon gas huff-n-puff were obtained. Finally, the dominant factors of hydrocarbon gas huff-n-puff under complex fracture networks are obtained by fuzzy mathematical method. Results reveal that the current pressure of hydrocarbon gas injection can achieve miscible displacement. The optimal injection and production parameters are obtained by single-factor analysis to analyze the effect of individual parameter. Gas injection time is the dominant factor of hydrocarbon gas huff-n-puff in unconventional oil reservoirs with complex fracture networks. This work can offer engineers guidance for hydrocarbon gas huff-n-puff of multiple MFHWs considering the complex fracture networks.展开更多
The new century has witnessed a strategic breakthrough in unconventional oil & gas.Hydrocarbon accumulated in micro-/nano-scale pore throat shale systems has become an important domain that could replace current oil ...The new century has witnessed a strategic breakthrough in unconventional oil & gas.Hydrocarbon accumulated in micro-/nano-scale pore throat shale systems has become an important domain that could replace current oil & gas resources.Unconventional oil & gas plays an increasingly important role in our energy demand.Tight gas,CBM,heavy oil and asphaltic sand have served as a key domain of exploration & development,with tight oil becoming a 'bright spot' domain and shale gas becoming a 'hotspot' domain.China has made great breakthroughs in unconventional oil & gas resources,such as tight gas,shale gas,tight oil and CBM,and great progress in oil shale,gas hydrate,heavy oil and oil sand.China has an estimated(223-263)×10~8t of unconventional oil resources and(890-1260)×l0^(12)m^3 of gas resources.China has made a breakthrough for progress in unconventional oil & gas study.New progress achieved in fine-grained sedimentary studies related to continental open lacustrine basin large-scale shallow-water delta sand bodies,lacustrine basin central sandy clastic flow sediments and marine-continental fine-grained sediments provide a theoretical basis for the formation and distribution of basin central reservoir bodies.Great breakthroughs have been made in unconventional reservoir geology in respect of research methodology & technology,multi-scale data merging and physical simulation of formation conditions.Overall characterization of unconventional reservoirs via multi-method and multi-scale becomes increasingly popular and facilitates the rapid development of unconventional oil & gas geological theory,method and technology.The formation of innovative,continuous hydrocarbon accumulation theory,the establishment of the framework of the unconventional oil & gas geological theory system,and the determination of the implications,geological feature,formation mechanism,distribution rule and core technology of unconventional oil& gas geological study lays a theoretical foundation for extensive unconventional oil & gas exploration and development.Theories and technologies of unconventional oil & gas exploration and development developed rapidly,including some key evaluation techniques such as 'sweet spot zone' integrated evaluation and a six-property evaluation technique that uses hydrocarbon source,lithology,physical property,brittleness,hydrocarbon potential and stress anisotropy,and some key development &engineering technologies including micro-seismic monitoring,horizontal drilling & completion and "factory-like" operation pattern, "man-made reservoir" development,which have facilitated the innovative development of unconventional oil & gas.These breakthroughs define a new understanding in four aspects:①theoretical innovation;② key technologies;③ complete market mechanism and national policy support;and ④ well-developed ground infrastructure,which are significant for prolonging the life cycle of petroleum industry,accelerating the upgrade and development of theories and technologies and altering the global traditional energy structure.展开更多
The classical source-to-trap petroleum system concept only considers the migration and accumulation of conventional oil and gas in traps driven dominantly by buoyance in a basin,although revised and improved,even some...The classical source-to-trap petroleum system concept only considers the migration and accumulation of conventional oil and gas in traps driven dominantly by buoyance in a basin,although revised and improved,even some new concepts as composite petroleum system,total petroleum system,total composite petroleum system,were proposed,but they do not account for the vast unconventional oil and gas reservoirs within the system,which is not formed and distributed in traps dominantly by buoyancedriven.Therefore,the petroleum system concept is no longer adequate in dealing with all the oil and gas accumulations in a basin where significant amount of the unconventional oil and gas resources are present in addition to the conventional oil and gas accumulations.This paper looked into and analyzed the distribution characteristics of conventional and unconventional oil/gas reservoirs and their differences and correlations in petroliferous basins in China and North America,and then proposed whole petroleum system(WPS)concept,the WPS is defined as a natural system that encompasses all the conventional and unconventional oil and gas,reservoirs and resources originated from organic matter in source rocks,the geological elements and processes involving the formation,evolution,and distribution of these oil and gas,reservoirs and resources.It is found in the WPS that there are three kinds of hydrocarbons dynamic fields,three kinds of original hydrocarbons,three kinds of reservoir rocks,and the coupling of these three essential elements lead to the basic ordered distribution model of shale oil/gas reservoirs contacting or interbeded with tight oil/gas reservoirs and separated conventional oil/gas reservoirs from source rocks upward,which is expressed as“S\T-C”.Abnormal conditions lead to other three special ordered distribution models:The first is that with shale oil/gas reservoirs separated from tight oil/gas reservoirs.The second is that with two direction ordered distributions from source upward and downward.The third is with lateral distribution from source outside.展开更多
As a milestone of the entire energy industry,unconventional resources have inevitably swept the world in the last decade,and will certainly dominate the global oil and gas industry in the near future.Eventually,the "...As a milestone of the entire energy industry,unconventional resources have inevitably swept the world in the last decade,and will certainly dominate the global oil and gas industry in the near future.Eventually,the "unconventional" will become "conventional".Along with the rapid development,however,some issues have emerged,which are closely related to the viability of unconventional resources development.Under the current circumstances of low crude oil and gas price,coupled with the prominent environmental concerns,the arguments about the development and production of unconventional resources have been recently heated up.This work introduced the fullblown aspects of unconventional resources especially shale reservoirs,by discussing their concepts and definitions,reviewing the shale gas and shale oil development history and necessity,analyzing the shale plays' geology and petroleum systems with respects to key hydrocarbon accumulation elements and mechanisms,and summarizing the technology resolution.This study also discussed the relevant key issues,including significant estimation uncertainty of technically recoverable resources,the equivocal understanding of complex geology preventing the production and technologies implementation optimization,the difficulties of experiences and technologies global expanding,and the corresponding risks and uncertainties.In addition,based on the latest production and exploration data,the future perspective of the unconventional resources was depicted from global unconventional resources assessments,technology development,and limitations constraining the development.展开更多
Unconventional oil and gas resources have become the most important and realistic field for increasing China’s domestic oil and gas reserves and production.At present,the production scale does not match the massive a...Unconventional oil and gas resources have become the most important and realistic field for increasing China’s domestic oil and gas reserves and production.At present,the production scale does not match the massive amount of resources and the rapid growth of proven geological reserves.The challenges of technology,cost,management,and methodology restrict large-scale and economic development.Based on successful practices,a"one engine with six gears"system engineering methodology is put forward,which includes life-cycle management,overall synergy,interdisciplinary cross-service integration,marketoriented operation,socialized support,digitalized management,and low-carbon and green development.The methodology has been proved to be effective in multiple unconventional oil and gas national demonstration areas,including the Jimusar continental shale oil demonstration area.Disruptive views are introduced-namely,that unconventional oil and gas do not necessarily yield a low return,nor do they necessarily have a low recovery factor.A determination to achieve economic benefit must be a pervasive underlying goal for managers and experts.Return and recovery factors,as primary focuses,must be adhered to during China’s development of unconventional oil and gas.The required methodology transformation includes a revolution in management systems to significantly decrease cost and increase production,resulting in technological innovation.展开更多
The development of natural gas in China has entered a golden and leap-forward stage, which is a necessary bridge to clean energy. This in-depth study on the status quo, theory, technology and prospect of natural gas d...The development of natural gas in China has entered a golden and leap-forward stage, which is a necessary bridge to clean energy. This in-depth study on the status quo, theory, technology and prospect of natural gas development shows:(1) The global remaining proven recoverable reserves of natural gas are 186×1012 m3, and the reserves-production ratio is 52.4, indicating a solid resource base for long-term and rapid development.(2) Ten formation and distribution laws of conventional and unconventional natural gas reservoirs have been proposed. In terms of exploration geology, the theory of conventional "monolithic" giant gas fields with different gas sources, and an unconventional gas accumulation theory with continuous distribution of "sweet areas" in different lithologic reservoirs have been established; in terms of development geology, a development theory of conventional structural gas reservoirs is oriented to "controlling water intrusion", while a development theory of unconventional gas is concentrated on man-made gas reservoirs.(3) With the geological resources(excluding hydrates) of 210×1012 m3 and the total proven rate of the resources less than 2% at present, the natural gas in China will see a constant increase in reserve and production; by 2030, the proven geological reserves of natural gas are expected to reach about(6 000-7 000)×108 m3, the production of conventional and unconventional natural gas each will reach about 1 000×108 m3, and the gas consumption will reach 5 500×108 m3. The dependence on imported natural gas may be 64% by 2030, and 70% by 2050.(4) Ten measures for future development of natural gas have been proposed, including strengthening exploration in large-scale resource areas, increasing the development benefits of unconventional gas, and enhancing the peak adjusting capacity of gas storage and scale construction of liquified natural gas.展开更多
Downhole microseismic data has the significant advantages of high signal-to-noise ratio and well-developed P and S waves and the core component of microseismic monitoring is microseismic event location associated with...Downhole microseismic data has the significant advantages of high signal-to-noise ratio and well-developed P and S waves and the core component of microseismic monitoring is microseismic event location associated with hydraulic fracturing in a relatively high confidence level and accuracy.In this study,we present a multidimensional DIRECT inversion method for microseismic locations and applicability tests over modeling data based on a downhole microseismic monitoring system.Synthetic tests inidcate that the objective function of locations can be defined as a multi-dimensional matrix space by employing the global optimization DIRECT algorithm,because it can be run without the initial value and objective function derivation,and the discretely scattered objective points lead to an expeditious contraction of objective functions in each dimension.This study shows that the DIRECT algorithm can be extensively applied in real downhole microseismic monitoring data from hydraulic fracturing completions.Therefore,the methodology,based on a multidimensional DIRECT algorithm,can provide significant high accuracy and convergent efficiency as well as robust computation for interpretable spatiotemporal microseismic evolution,which is more suitable for real-time processing of a large amount of downhole microseismic monitoring data.展开更多
The Daqing exploration area in the northern Songliao Basin has great potential for unconventional oil and gas resources,among which the total resources of tight oil alone exceed 109 t and is regarded as an important r...The Daqing exploration area in the northern Songliao Basin has great potential for unconventional oil and gas resources,among which the total resources of tight oil alone exceed 109 t and is regarded as an important resource base of Daqing oilfield.After years of exploration in the Qijia area,Songliao Basin,NE China,tight oil has been found in the Upper Cretaceous Qingshankou Formation.To work out tight oil’s geological characteristics,taking tight oil in Gaotaizi oil layers of the Upper Cretaceous Qingshankou Formation in northern Songliao Basin as an example,this paper systematically analyzed the geological characteristics of unconventional tight oil in Gao3 and Gao4 layers of the Qijia area,based on the data of the geological survey,well drilling journey,well logging,and test.It is that three sets of hydrocarbon source rocks(K2qn1,K2qn2+3,and K2n1)develop in the examined area,and exhibit excellent type I and II kerogens,high organic matter abundance,and moderate maturity.The reservoir is generally composed of thin-bedded mudstone,siltstone,and sandstone,and presents poor porosity(average 8.5 vol.%)and air permeability(average 4 mD).The main reservoir space primarily includes intergranular pores,secondary soluble pores,and intergranular soluble pores.Three types of orifice throats were identified,namely fine throat,extra-fine throat,and micro-fine throat.The siltstone is generally oil-bearing,the reservoirs with slime and calcium become worse oil-bearing,and the mudstone has no obvious oil-bearing characteristics.The brittleness indices of the sandstone in the tight oil reservoir range from 40%to 60%,and those of the mudstone range from 40%to 45%,indicating a better brittleness of the tight oil reservoir.Based on the study of typical core hole data,this paper gives a comprehensive evaluation of the properties of the tight oil and establishes a tight oil single well composite bar chart as well as the initial evaluation system with the core of properties in the tight oil reservoir.This study has theoretical guiding significance and practical application value for tight oil exploration and evaluation in the Qijia area.展开更多
This study analyses the geological characteristics and development progress of unconventional gas in China,summarizes the development theories and technologies,discusses the prospects and challenges of unconventional ...This study analyses the geological characteristics and development progress of unconventional gas in China,summarizes the development theories and technologies,discusses the prospects and challenges of unconventional gas development,and puts forward the future trends of development technologies.Various technologies of unconventional gas development are available in China.Shale gas development technologies include comprehensive geological evaluation,volume fracturing of cluster horizontal wells under complex stress conditions,and factory-like operation of horizontal wells in complex mountainous area et al.Tight gas development technologies include fluid identification and quantitative prediction,optimization of well patterns,multi-layer fracturing in vertical well,staged fracturing in horizontal well,and drainage gas recovery.Coalbed methane(CBM)development technologies include the prediction of medium-high-and medium-low-rank CBM enrichment areas,rate-variable hydraulic fracturing,and quantitative drainage recovery with five stages,three pressures,and four controls.For economic and effective development of unconventional gas,further efforts should be made.First,intensified studies should be conducted on high-precision prediction and fine characterization technologies of high-quality shale reservoirs in deep marine,continental,and transitional facies.Second,key theories and technologies such as fast drilling and completion of wells with long laterals as well as large-scale volume fracturing should be developed to improve well productivity.Third,new technologies such as multiple well-type development,fluid injection,and nano-flooding should be developed to enhance the recovery.Fourth,effort should be made to identify the accumulation mechanism and large-scale effective development technologies for CBM.Fifth,the application of large amounts of data and artificial intelligence in the entire process of unconventional gas development should be considered to reduce the development cost.展开更多
Taking the Wufeng–Longmaxi shale gas in the Sichuan Basin as a typical example,based on the new progress in exploration and development,this study re-examines the"unconventional"of unconventional oil and ga...Taking the Wufeng–Longmaxi shale gas in the Sichuan Basin as a typical example,based on the new progress in exploration and development,this study re-examines the"unconventional"of unconventional oil and gas from two aspects:oil and gas formation and accumulation mechanisms,and main features of oil and gas layers.The oil and gas of continuous accumulation and distribution from integrated source and reservoir is unconventional oil and gas,and the study focusing on shale oil and gas in comparison with conventional oil and gas has made progress in five aspects:(1)Unconventional oil and gas have source-reservoir-in-one and in-situ accumulation;according to the theory of continuous oil and gas accumulation,the accumulation power of oil and gas is overpressure and diffusion;for conventional oil and gas,the source and reservoir are different formations,the trapping accumulation is its theoretical foundation,and the accumulation power is characterized by buoyancy and capillary force.(2)The unconventional oil and gas reservoirs are mainly formed in the low-energy oxygen-anaerobic environment,dominantly semi-deep to deep shelf facies and the semi-deep to deep lake facies,simple in lithology,rich in organic matter and clay minerals;conventional oil and gas mainly occur in coarse-grained sedimentary rocks formed in high-energy waters with complex lithology.(3)The unconventional oil and gas reservoirs have mainly nano-scale pores,of which organic matter pores take a considerable proportion;conventional oil and gas reservoirs mainly have micron-millimeter pores and no organic matter pores.(4)Unconventional shale oil and gas reservoirs have oil and gas in uniform distribution,high oil and gas saturation,low or no water content,and no obvious oil and gas water boundary;conventional oil and gas reservoirs have oil and gas of complex properties,moderate oil and gas saturation,slightly higher water content,and obvious oil,gas and water boundaries.(5)Organic-rich shale is the main target of unconventional oil and gas exploration;the sedimentary environment controls high organic matter abundance zone and organic matter content controls oil and gas abundance;positive structure and high porosity control the yields of shale wells;bedding and fracture development are important factors deciding high yield.展开更多
During the past several years, natural gas production from shale gas is increased and has adsorbed much attention worldwide. The reason behind this is because of advances gained in shale gas recovery techniques from t...During the past several years, natural gas production from shale gas is increased and has adsorbed much attention worldwide. The reason behind this is because of advances gained in shale gas recovery techniques from this ultra-low permeability/porosity rock. These techniques are considered the horizontal drilling of the length of 3000 to 5000 ft long and conducting multi-stage hydraulic fracturing along the horizontal portion of the wells. The successful application of above has also driven down the gas prices worldwide and also culminated the security of gas supply for the upcoming decades. This paper is a technical literature review of shale gas production and modeling for future performance evaluation that identifies the current challenges in different stages. Several different and complex physics of gas flow in such a low permeability formation is also explained and the state of the art of the challenges encountered in the modeling process is also explained. As such, gas desorption phenomena, non-Darcy Flow, gas Klinkenberg effect are investigated for different shale formations in the US. This technical review also takes a look over the hydraulic fracturing effects on the economics of shale gas wells due to its straight tie to the production from shale and also the overall recovery from such reservoirs.展开更多
There are many oil and gas conventional reservoirs in Saudi Arabia have been exploited, but still there are also need to be explored and produced especially in the fields of unconventional shale gas. Investigation the...There are many oil and gas conventional reservoirs in Saudi Arabia have been exploited, but still there are also need to be explored and produced especially in the fields of unconventional shale gas. Investigation the extending of rock source of the hot shale gas Qusaiba formation in North part of Saudi Arabia, the most important rock source in the word, is crucial for one of the most promising shallow shale gas reservoir in the region. Most previous studies in the area were a geological, petrographical, petrophysical, geochemical characteristics or well logs studies which are not enough to show the continuously of the reservoir and map the diverse of the depth changes. The lack of the geophysical studies in the area inspiring to perform such study and image how the continuously and behavior of the reservoir subsurface. Imaging the geological stratigraphy of area utilizing a multiple geophysical methods is a crucial step to disclosure the unconventional reservoir and understand the source rock extending underneath the North region of Saudi Arabia. A good achievement is shown in this study using this integration of seismic migrated image and gravity geological model. This integration provides a robust and true subsurface geological formations, structures, and determined thickness and depth of the Lower Silurian Sharawra Qusaiba and Sarah formations. This work would be a valuable contribution in unconventional reservoirs exploration in shale gas in Saudi Arabia.展开更多
A new method for selecting dimensionless relaxation time in the lattice Boltzmann model was proposed based on similarity criterion and gas true physical parameters.At the same time,the dimensionless relaxation time wa...A new method for selecting dimensionless relaxation time in the lattice Boltzmann model was proposed based on similarity criterion and gas true physical parameters.At the same time,the dimensionless relaxation time was modified by considering the influence of the boundary Knudsen layer.On this basis,the second-order slip boundary condition of the wall was considered,and the key parameters in the corresponding combined bounce-back/specular-reflection boundary condition were deduced to build a new model of unconventional gas microscale flow simulation based on the lattice Boltzmann method suitable for high temperatures and high pressures.The simulation results of methane gas flow driven by body force in infinite micro-channels and flow driven by inlet-outlet pressure differential in long straight channels were compared with the numerical and analytical solutions in the literature to verify the accuracy of the model,and the dimensionless relaxation time modification was formally optimized.The results show that the new model can effectively characterize the slippage effect,compression effect,gas density and the effect of boundary Knudsen layer in the micro-scale flow of unconventional natural gas.The new model can achieve a more comprehensive characterization of the real gas flow conditions and can be used as a basic model for the simulation of unconventional gas flow on the micro-nano scale.展开更多
In the process of unconventional natural gas development practice,the"extreme utilization"concept that focuses on"continuously breaking through the limit of development technology"is gradually form...In the process of unconventional natural gas development practice,the"extreme utilization"concept that focuses on"continuously breaking through the limit of development technology"is gradually formed,and supports the scale benefit exploration of unconventional gas in China.On this basis,the development theory of"extreme utilization"is proposed,its theoretical connotation together with development technologies of unconventional natural gas are clarified.The theoretical connotation is that,aiming at"extreme gas reservoirs","extreme techniques"are utilized to build subsurface connected bodies,expand the discharge area,and enlarge the production range,to obtain the maximum single-well production,extreme recovery,and eventually achieve the"extreme effect"of production.The series of development technologies include micro/nano-scale reservoir evaluation,"sweet spot"prediction,unconventional percolation theory and production capacity evaluation,optimization of grid well pattern,optimal-fast drilling and volume fracturing,and working regulation optimization and"integrated"organizing system.The"extreme utilization"development theory has been successfully applied in the development of unconventional gas reservoirs such as Sulige tight gas,South Sichuan shale gas,and Qinshui coalbed methane.Such practices demonstrate that,the"extreme utilization"development theory has effectively promoted the development of unconventional gas industry in China,and can provide theoretical guidance for effective development of other potential unconventional and difficult-to-recovery resources.展开更多
Regarding the abundant reserves in China, unconventional oil and gas resources has great potential in exploration and development, and may be the significant complement to conventional oil and gas resources. Based on ...Regarding the abundant reserves in China, unconventional oil and gas resources has great potential in exploration and development, and may be the significant complement to conventional oil and gas resources. Based on the summary of the reservoir potential and current situation of exploration and development of unconventional oil and gas resources, such as coalbed methane(CBM), shale gas and oil shale, we analyzed the incentive policies proposed to promote the development of unconventional oil and gas industry, including industrial planning, resource management and related tax policy. These policies played an important role in promoting the exploration, development and utilization of unconventional oil and gas resources.展开更多
Multiple fractured horizontal wells (MFHWs) currently are the only possible means of commercial production from the low and ultra-low permeability unconventional gas reservoirs. In early production time, flowback flui...Multiple fractured horizontal wells (MFHWs) currently are the only possible means of commercial production from the low and ultra-low permeability unconventional gas reservoirs. In early production time, flowback fluid, which constitutes of hydraulic water and gas flow within fractures, is collected and analyzed. Flowback analysis has been shown to be a useful tool to estimate key properties of the hydraulic fracture such as conductivity and pore volume. Until date, most tools of flowback analysis rely on empirical and approximate methods. This study presents an improved Green-function-based semi-analytical solution for performance analysis of horizontal gas wells during flowback and early production periods. The proposed solution is derived based on coupling the solutions of two domains: a rigorously derived Green’s function-based integral solution for single-phase gas flow in matrix, and a finite-difference, multiphase solution for gas–water two-phase flow in the fracture. The validity of proposed semi-analytical solution is verified by finely gridded numerical models built in a commercial simulator for a series of synthetic cases considering a variety of fluid and reservoir property combinations, as well as various different production constraints. Comparisons against available empirical and approximate methods are also provided for these cases.展开更多
Nowadays,the unconventional gas-bearing system plays an increasingly important role in energy market.The performances of the current history-matching techniques are not satisfied when applied to such systems.To overco...Nowadays,the unconventional gas-bearing system plays an increasingly important role in energy market.The performances of the current history-matching techniques are not satisfied when applied to such systems.To overcome this shortfall,an alternative approach was developed and applied to investigate production data from an unconventional gas-bearing system.In this approach,the fluid flow curve obtained from the field is the superposition of a series of Gaussian functions.An automatic computing program was developed in the MATLAB,and both gas and water field data collected from a vertical well in the Linxing Block,Ordos Basin,were used to present the data processing technique.In the reservoir study,the automatic computing program was applied to match the production data from a single coal seam,multiple coal seams and multiple vertically stacked reservoirs with favourable fitting results.Compared with previous approaches,the proposed approach yields better results for both gas and water production data and can calculate the contributions from different reservoirs.The start time of the extraction for each gas-containing unit can also be determined.The new approach can be applied to the field data prediction and designation for the well locations and patterns at the reservoir scale.展开更多
A method to generate fractures with rough surfaces was proposed according to the fractal interpolation theory.Considering the particle-particle,particle-wall and particle-fluid interactions,a proppant-fracturing fluid...A method to generate fractures with rough surfaces was proposed according to the fractal interpolation theory.Considering the particle-particle,particle-wall and particle-fluid interactions,a proppant-fracturing fluid two-phase flow model based on computational fluid dynamics(CFD)-discrete element method(DEM)coupling was established.The simulation results were verified with relevant experimental data.It was proved that the model can match transport and accumulation of proppants in rough fractures well.Several cases of numerical simulations were carried out.Compared with proppant transport in smooth flat fractures,bulge on the rough fracture wall affects transport and settlement of proppants significantly in proppant transportation in rough fractures.The higher the roughness of fracture,the faster the settlement of proppant particles near the fracture inlet,the shorter the horizontal transport distance,and the more likely to accumulate near the fracture inlet to form a sand plugging in a short time.Fracture wall roughness could control the migration path of fracturing fluid to a certain degree and change the path of proppant filling in the fracture.On the one hand,the rough wall bulge raises the proppant transport path and the proppants flow out of the fracture,reducing the proppant sweep area.On the other hand,the sand-carrying fluid is prone to change flow direction near the contact point of bulge,thus expanding the proppant sweep area.展开更多
The following article has been retracted due to the investigation of complaints received against it. The Editorial Board found that substantial portions of the text came from other published papers. The scientific com...The following article has been retracted due to the investigation of complaints received against it. The Editorial Board found that substantial portions of the text came from other published papers. The scientific community takes a very strong view on this matter, and the Journal of power and Energy Engineering (JPEE) treats all unethical behavior such as plagiarism seriously. This paper published in Vol.2 No.4,297-303(pages), 2014, has been removed from this site.展开更多
In accordance with the development concept of 'innovation,coordination,green,openness and sharing' and to promote the supply-side structural reform,CNPC proposes its new goals and strategy in the new era,and e...In accordance with the development concept of 'innovation,coordination,green,openness and sharing' and to promote the supply-side structural reform,CNPC proposes its new goals and strategy in the new era,and expands the overall strategy into ‘resources,market,internationalization and innovation'to adapt to the needs of cleaner energy development in the new era and highlight innovation,openness and green development.It has been seen that through foreign cooperation in the field of unconventional gas,remarkable results have been achieved in the introduction of international advanced concepts,technologies and management experiences.Tight gas and shale gas resources in Central China are abundant but more challenged in geological condition than that in North American,and there are great geological,technical and economic risks.CNPC has achieved significant phased achievements for the development of tight gas and shale gas in Ordos and Sichuan Basin;however,the development quality of unconventional gas assets needs to be further improved.To achieve high-quality development of tight gas and shale gas,on one hand,we must implement the strategy of self-operation and foreign cooperation combination,take advantage of the in tegration of self-operation with foreign cooperation and realize synergetic development;on the other hand,we need to fully understand that the technical characteristics of tight gas and shale gas are different from those of the conventional energy and unconventional technical measures,management strategies and methods are required.展开更多
基金funded by the National Natural Science Foundation of China(No.51974268)Open Fund of Key Laboratory of Ministry of Education for Improving Oil and Gas Recovery(NEPUEOR-2022-03)Research and Innovation Fund for Graduate Students of Southwest Petroleum University(No.2022KYCX005)。
文摘The oil production of the multi-fractured horizontal wells(MFHWs) declines quickly in unconventional oil reservoirs due to the fast depletion of natural energy. Gas injection has been acknowledged as an effective method to improve oil recovery factor from unconventional oil reservoirs. Hydrocarbon gas huff-n-puff becomes preferable when the CO_(2) source is limited. However, the impact of complex fracture networks and well interference on the EOR performance of multiple MFHWs is still unclear. The optimal gas huff-n-puff parameters are significant for enhancing oil recovery. This work aims to optimize the hydrocarbon gas injection and production parameters for multiple MFHWs with complex fracture networks in unconventional oil reservoirs. Firstly, the numerical model based on unstructured grids is developed to characterize the complex fracture networks and capture the dynamic fracture features.Secondly, the PVT phase behavior simulation was carried out to provide the fluid model for numerical simulation. Thirdly, the optimal parameters for hydrocarbon gas huff-n-puff were obtained. Finally, the dominant factors of hydrocarbon gas huff-n-puff under complex fracture networks are obtained by fuzzy mathematical method. Results reveal that the current pressure of hydrocarbon gas injection can achieve miscible displacement. The optimal injection and production parameters are obtained by single-factor analysis to analyze the effect of individual parameter. Gas injection time is the dominant factor of hydrocarbon gas huff-n-puff in unconventional oil reservoirs with complex fracture networks. This work can offer engineers guidance for hydrocarbon gas huff-n-puff of multiple MFHWs considering the complex fracture networks.
基金Funded by the National Key Basic Research and Development Program(973 Program),China(Grant 2014CB239000)China National Science and Technology Major Project(Grant 2011ZX05001)
文摘The new century has witnessed a strategic breakthrough in unconventional oil & gas.Hydrocarbon accumulated in micro-/nano-scale pore throat shale systems has become an important domain that could replace current oil & gas resources.Unconventional oil & gas plays an increasingly important role in our energy demand.Tight gas,CBM,heavy oil and asphaltic sand have served as a key domain of exploration & development,with tight oil becoming a 'bright spot' domain and shale gas becoming a 'hotspot' domain.China has made great breakthroughs in unconventional oil & gas resources,such as tight gas,shale gas,tight oil and CBM,and great progress in oil shale,gas hydrate,heavy oil and oil sand.China has an estimated(223-263)×10~8t of unconventional oil resources and(890-1260)×l0^(12)m^3 of gas resources.China has made a breakthrough for progress in unconventional oil & gas study.New progress achieved in fine-grained sedimentary studies related to continental open lacustrine basin large-scale shallow-water delta sand bodies,lacustrine basin central sandy clastic flow sediments and marine-continental fine-grained sediments provide a theoretical basis for the formation and distribution of basin central reservoir bodies.Great breakthroughs have been made in unconventional reservoir geology in respect of research methodology & technology,multi-scale data merging and physical simulation of formation conditions.Overall characterization of unconventional reservoirs via multi-method and multi-scale becomes increasingly popular and facilitates the rapid development of unconventional oil & gas geological theory,method and technology.The formation of innovative,continuous hydrocarbon accumulation theory,the establishment of the framework of the unconventional oil & gas geological theory system,and the determination of the implications,geological feature,formation mechanism,distribution rule and core technology of unconventional oil& gas geological study lays a theoretical foundation for extensive unconventional oil & gas exploration and development.Theories and technologies of unconventional oil & gas exploration and development developed rapidly,including some key evaluation techniques such as 'sweet spot zone' integrated evaluation and a six-property evaluation technique that uses hydrocarbon source,lithology,physical property,brittleness,hydrocarbon potential and stress anisotropy,and some key development &engineering technologies including micro-seismic monitoring,horizontal drilling & completion and "factory-like" operation pattern, "man-made reservoir" development,which have facilitated the innovative development of unconventional oil & gas.These breakthroughs define a new understanding in four aspects:①theoretical innovation;② key technologies;③ complete market mechanism and national policy support;and ④ well-developed ground infrastructure,which are significant for prolonging the life cycle of petroleum industry,accelerating the upgrade and development of theories and technologies and altering the global traditional energy structure.
基金This work was supported by the major science and technology projects of CNPC during the“14th five-year plan”(Grant number 2021DJ0101)。
文摘The classical source-to-trap petroleum system concept only considers the migration and accumulation of conventional oil and gas in traps driven dominantly by buoyance in a basin,although revised and improved,even some new concepts as composite petroleum system,total petroleum system,total composite petroleum system,were proposed,but they do not account for the vast unconventional oil and gas reservoirs within the system,which is not formed and distributed in traps dominantly by buoyancedriven.Therefore,the petroleum system concept is no longer adequate in dealing with all the oil and gas accumulations in a basin where significant amount of the unconventional oil and gas resources are present in addition to the conventional oil and gas accumulations.This paper looked into and analyzed the distribution characteristics of conventional and unconventional oil/gas reservoirs and their differences and correlations in petroliferous basins in China and North America,and then proposed whole petroleum system(WPS)concept,the WPS is defined as a natural system that encompasses all the conventional and unconventional oil and gas,reservoirs and resources originated from organic matter in source rocks,the geological elements and processes involving the formation,evolution,and distribution of these oil and gas,reservoirs and resources.It is found in the WPS that there are three kinds of hydrocarbons dynamic fields,three kinds of original hydrocarbons,three kinds of reservoir rocks,and the coupling of these three essential elements lead to the basic ordered distribution model of shale oil/gas reservoirs contacting or interbeded with tight oil/gas reservoirs and separated conventional oil/gas reservoirs from source rocks upward,which is expressed as“S\T-C”.Abnormal conditions lead to other three special ordered distribution models:The first is that with shale oil/gas reservoirs separated from tight oil/gas reservoirs.The second is that with two direction ordered distributions from source upward and downward.The third is with lateral distribution from source outside.
文摘As a milestone of the entire energy industry,unconventional resources have inevitably swept the world in the last decade,and will certainly dominate the global oil and gas industry in the near future.Eventually,the "unconventional" will become "conventional".Along with the rapid development,however,some issues have emerged,which are closely related to the viability of unconventional resources development.Under the current circumstances of low crude oil and gas price,coupled with the prominent environmental concerns,the arguments about the development and production of unconventional resources have been recently heated up.This work introduced the fullblown aspects of unconventional resources especially shale reservoirs,by discussing their concepts and definitions,reviewing the shale gas and shale oil development history and necessity,analyzing the shale plays' geology and petroleum systems with respects to key hydrocarbon accumulation elements and mechanisms,and summarizing the technology resolution.This study also discussed the relevant key issues,including significant estimation uncertainty of technically recoverable resources,the equivocal understanding of complex geology preventing the production and technologies implementation optimization,the difficulties of experiences and technologies global expanding,and the corresponding risks and uncertainties.In addition,based on the latest production and exploration data,the future perspective of the unconventional resources was depicted from global unconventional resources assessments,technology development,and limitations constraining the development.
基金supported by the Project of Basic Science Center for the National Natural Science Foundation of China(72088101)。
文摘Unconventional oil and gas resources have become the most important and realistic field for increasing China’s domestic oil and gas reserves and production.At present,the production scale does not match the massive amount of resources and the rapid growth of proven geological reserves.The challenges of technology,cost,management,and methodology restrict large-scale and economic development.Based on successful practices,a"one engine with six gears"system engineering methodology is put forward,which includes life-cycle management,overall synergy,interdisciplinary cross-service integration,marketoriented operation,socialized support,digitalized management,and low-carbon and green development.The methodology has been proved to be effective in multiple unconventional oil and gas national demonstration areas,including the Jimusar continental shale oil demonstration area.Disruptive views are introduced-namely,that unconventional oil and gas do not necessarily yield a low return,nor do they necessarily have a low recovery factor.A determination to achieve economic benefit must be a pervasive underlying goal for managers and experts.Return and recovery factors,as primary focuses,must be adhered to during China’s development of unconventional oil and gas.The required methodology transformation includes a revolution in management systems to significantly decrease cost and increase production,resulting in technological innovation.
基金Supported by the National Science and Technology Major Project of China(2016ZX05047,2016ZX05015)the National Basic Research Program of China(973 Program)(014CB239000)
文摘The development of natural gas in China has entered a golden and leap-forward stage, which is a necessary bridge to clean energy. This in-depth study on the status quo, theory, technology and prospect of natural gas development shows:(1) The global remaining proven recoverable reserves of natural gas are 186×1012 m3, and the reserves-production ratio is 52.4, indicating a solid resource base for long-term and rapid development.(2) Ten formation and distribution laws of conventional and unconventional natural gas reservoirs have been proposed. In terms of exploration geology, the theory of conventional "monolithic" giant gas fields with different gas sources, and an unconventional gas accumulation theory with continuous distribution of "sweet areas" in different lithologic reservoirs have been established; in terms of development geology, a development theory of conventional structural gas reservoirs is oriented to "controlling water intrusion", while a development theory of unconventional gas is concentrated on man-made gas reservoirs.(3) With the geological resources(excluding hydrates) of 210×1012 m3 and the total proven rate of the resources less than 2% at present, the natural gas in China will see a constant increase in reserve and production; by 2030, the proven geological reserves of natural gas are expected to reach about(6 000-7 000)×108 m3, the production of conventional and unconventional natural gas each will reach about 1 000×108 m3, and the gas consumption will reach 5 500×108 m3. The dependence on imported natural gas may be 64% by 2030, and 70% by 2050.(4) Ten measures for future development of natural gas have been proposed, including strengthening exploration in large-scale resource areas, increasing the development benefits of unconventional gas, and enhancing the peak adjusting capacity of gas storage and scale construction of liquified natural gas.
基金financially supported by the National Natural Science Foundation of China (Grant No. 41807296 and No. 41802006)Natural science found for universities of Anhui province (Grant No. KJ2017A036)
文摘Downhole microseismic data has the significant advantages of high signal-to-noise ratio and well-developed P and S waves and the core component of microseismic monitoring is microseismic event location associated with hydraulic fracturing in a relatively high confidence level and accuracy.In this study,we present a multidimensional DIRECT inversion method for microseismic locations and applicability tests over modeling data based on a downhole microseismic monitoring system.Synthetic tests inidcate that the objective function of locations can be defined as a multi-dimensional matrix space by employing the global optimization DIRECT algorithm,because it can be run without the initial value and objective function derivation,and the discretely scattered objective points lead to an expeditious contraction of objective functions in each dimension.This study shows that the DIRECT algorithm can be extensively applied in real downhole microseismic monitoring data from hydraulic fracturing completions.Therefore,the methodology,based on a multidimensional DIRECT algorithm,can provide significant high accuracy and convergent efficiency as well as robust computation for interpretable spatiotemporal microseismic evolution,which is more suitable for real-time processing of a large amount of downhole microseismic monitoring data.
基金funded by the shale oil and gas geological survey project in Quemoco sag,Qiangtang Basin of China Geological Survey(DD20221855,DD20230315).
文摘The Daqing exploration area in the northern Songliao Basin has great potential for unconventional oil and gas resources,among which the total resources of tight oil alone exceed 109 t and is regarded as an important resource base of Daqing oilfield.After years of exploration in the Qijia area,Songliao Basin,NE China,tight oil has been found in the Upper Cretaceous Qingshankou Formation.To work out tight oil’s geological characteristics,taking tight oil in Gaotaizi oil layers of the Upper Cretaceous Qingshankou Formation in northern Songliao Basin as an example,this paper systematically analyzed the geological characteristics of unconventional tight oil in Gao3 and Gao4 layers of the Qijia area,based on the data of the geological survey,well drilling journey,well logging,and test.It is that three sets of hydrocarbon source rocks(K2qn1,K2qn2+3,and K2n1)develop in the examined area,and exhibit excellent type I and II kerogens,high organic matter abundance,and moderate maturity.The reservoir is generally composed of thin-bedded mudstone,siltstone,and sandstone,and presents poor porosity(average 8.5 vol.%)and air permeability(average 4 mD).The main reservoir space primarily includes intergranular pores,secondary soluble pores,and intergranular soluble pores.Three types of orifice throats were identified,namely fine throat,extra-fine throat,and micro-fine throat.The siltstone is generally oil-bearing,the reservoirs with slime and calcium become worse oil-bearing,and the mudstone has no obvious oil-bearing characteristics.The brittleness indices of the sandstone in the tight oil reservoir range from 40%to 60%,and those of the mudstone range from 40%to 45%,indicating a better brittleness of the tight oil reservoir.Based on the study of typical core hole data,this paper gives a comprehensive evaluation of the properties of the tight oil and establishes a tight oil single well composite bar chart as well as the initial evaluation system with the core of properties in the tight oil reservoir.This study has theoretical guiding significance and practical application value for tight oil exploration and evaluation in the Qijia area.
文摘This study analyses the geological characteristics and development progress of unconventional gas in China,summarizes the development theories and technologies,discusses the prospects and challenges of unconventional gas development,and puts forward the future trends of development technologies.Various technologies of unconventional gas development are available in China.Shale gas development technologies include comprehensive geological evaluation,volume fracturing of cluster horizontal wells under complex stress conditions,and factory-like operation of horizontal wells in complex mountainous area et al.Tight gas development technologies include fluid identification and quantitative prediction,optimization of well patterns,multi-layer fracturing in vertical well,staged fracturing in horizontal well,and drainage gas recovery.Coalbed methane(CBM)development technologies include the prediction of medium-high-and medium-low-rank CBM enrichment areas,rate-variable hydraulic fracturing,and quantitative drainage recovery with five stages,three pressures,and four controls.For economic and effective development of unconventional gas,further efforts should be made.First,intensified studies should be conducted on high-precision prediction and fine characterization technologies of high-quality shale reservoirs in deep marine,continental,and transitional facies.Second,key theories and technologies such as fast drilling and completion of wells with long laterals as well as large-scale volume fracturing should be developed to improve well productivity.Third,new technologies such as multiple well-type development,fluid injection,and nano-flooding should be developed to enhance the recovery.Fourth,effort should be made to identify the accumulation mechanism and large-scale effective development technologies for CBM.Fifth,the application of large amounts of data and artificial intelligence in the entire process of unconventional gas development should be considered to reduce the development cost.
基金Supported by National Science and Technology Major Project(2017ZX05035).
文摘Taking the Wufeng–Longmaxi shale gas in the Sichuan Basin as a typical example,based on the new progress in exploration and development,this study re-examines the"unconventional"of unconventional oil and gas from two aspects:oil and gas formation and accumulation mechanisms,and main features of oil and gas layers.The oil and gas of continuous accumulation and distribution from integrated source and reservoir is unconventional oil and gas,and the study focusing on shale oil and gas in comparison with conventional oil and gas has made progress in five aspects:(1)Unconventional oil and gas have source-reservoir-in-one and in-situ accumulation;according to the theory of continuous oil and gas accumulation,the accumulation power of oil and gas is overpressure and diffusion;for conventional oil and gas,the source and reservoir are different formations,the trapping accumulation is its theoretical foundation,and the accumulation power is characterized by buoyancy and capillary force.(2)The unconventional oil and gas reservoirs are mainly formed in the low-energy oxygen-anaerobic environment,dominantly semi-deep to deep shelf facies and the semi-deep to deep lake facies,simple in lithology,rich in organic matter and clay minerals;conventional oil and gas mainly occur in coarse-grained sedimentary rocks formed in high-energy waters with complex lithology.(3)The unconventional oil and gas reservoirs have mainly nano-scale pores,of which organic matter pores take a considerable proportion;conventional oil and gas reservoirs mainly have micron-millimeter pores and no organic matter pores.(4)Unconventional shale oil and gas reservoirs have oil and gas in uniform distribution,high oil and gas saturation,low or no water content,and no obvious oil and gas water boundary;conventional oil and gas reservoirs have oil and gas of complex properties,moderate oil and gas saturation,slightly higher water content,and obvious oil,gas and water boundaries.(5)Organic-rich shale is the main target of unconventional oil and gas exploration;the sedimentary environment controls high organic matter abundance zone and organic matter content controls oil and gas abundance;positive structure and high porosity control the yields of shale wells;bedding and fracture development are important factors deciding high yield.
文摘During the past several years, natural gas production from shale gas is increased and has adsorbed much attention worldwide. The reason behind this is because of advances gained in shale gas recovery techniques from this ultra-low permeability/porosity rock. These techniques are considered the horizontal drilling of the length of 3000 to 5000 ft long and conducting multi-stage hydraulic fracturing along the horizontal portion of the wells. The successful application of above has also driven down the gas prices worldwide and also culminated the security of gas supply for the upcoming decades. This paper is a technical literature review of shale gas production and modeling for future performance evaluation that identifies the current challenges in different stages. Several different and complex physics of gas flow in such a low permeability formation is also explained and the state of the art of the challenges encountered in the modeling process is also explained. As such, gas desorption phenomena, non-Darcy Flow, gas Klinkenberg effect are investigated for different shale formations in the US. This technical review also takes a look over the hydraulic fracturing effects on the economics of shale gas wells due to its straight tie to the production from shale and also the overall recovery from such reservoirs.
文摘There are many oil and gas conventional reservoirs in Saudi Arabia have been exploited, but still there are also need to be explored and produced especially in the fields of unconventional shale gas. Investigation the extending of rock source of the hot shale gas Qusaiba formation in North part of Saudi Arabia, the most important rock source in the word, is crucial for one of the most promising shallow shale gas reservoir in the region. Most previous studies in the area were a geological, petrographical, petrophysical, geochemical characteristics or well logs studies which are not enough to show the continuously of the reservoir and map the diverse of the depth changes. The lack of the geophysical studies in the area inspiring to perform such study and image how the continuously and behavior of the reservoir subsurface. Imaging the geological stratigraphy of area utilizing a multiple geophysical methods is a crucial step to disclosure the unconventional reservoir and understand the source rock extending underneath the North region of Saudi Arabia. A good achievement is shown in this study using this integration of seismic migrated image and gravity geological model. This integration provides a robust and true subsurface geological formations, structures, and determined thickness and depth of the Lower Silurian Sharawra Qusaiba and Sarah formations. This work would be a valuable contribution in unconventional reservoirs exploration in shale gas in Saudi Arabia.
基金Supported by National Natural Science Foundation of China(Key Program)(51534006)National Natural Science Foundation of China(51874251)。
文摘A new method for selecting dimensionless relaxation time in the lattice Boltzmann model was proposed based on similarity criterion and gas true physical parameters.At the same time,the dimensionless relaxation time was modified by considering the influence of the boundary Knudsen layer.On this basis,the second-order slip boundary condition of the wall was considered,and the key parameters in the corresponding combined bounce-back/specular-reflection boundary condition were deduced to build a new model of unconventional gas microscale flow simulation based on the lattice Boltzmann method suitable for high temperatures and high pressures.The simulation results of methane gas flow driven by body force in infinite micro-channels and flow driven by inlet-outlet pressure differential in long straight channels were compared with the numerical and analytical solutions in the literature to verify the accuracy of the model,and the dimensionless relaxation time modification was formally optimized.The results show that the new model can effectively characterize the slippage effect,compression effect,gas density and the effect of boundary Knudsen layer in the micro-scale flow of unconventional natural gas.The new model can achieve a more comprehensive characterization of the real gas flow conditions and can be used as a basic model for the simulation of unconventional gas flow on the micro-nano scale.
基金Supported by the China National Science and Technology Major Project(2017ZX05035,2016ZX05037)。
文摘In the process of unconventional natural gas development practice,the"extreme utilization"concept that focuses on"continuously breaking through the limit of development technology"is gradually formed,and supports the scale benefit exploration of unconventional gas in China.On this basis,the development theory of"extreme utilization"is proposed,its theoretical connotation together with development technologies of unconventional natural gas are clarified.The theoretical connotation is that,aiming at"extreme gas reservoirs","extreme techniques"are utilized to build subsurface connected bodies,expand the discharge area,and enlarge the production range,to obtain the maximum single-well production,extreme recovery,and eventually achieve the"extreme effect"of production.The series of development technologies include micro/nano-scale reservoir evaluation,"sweet spot"prediction,unconventional percolation theory and production capacity evaluation,optimization of grid well pattern,optimal-fast drilling and volume fracturing,and working regulation optimization and"integrated"organizing system.The"extreme utilization"development theory has been successfully applied in the development of unconventional gas reservoirs such as Sulige tight gas,South Sichuan shale gas,and Qinshui coalbed methane.Such practices demonstrate that,the"extreme utilization"development theory has effectively promoted the development of unconventional gas industry in China,and can provide theoretical guidance for effective development of other potential unconventional and difficult-to-recovery resources.
文摘Regarding the abundant reserves in China, unconventional oil and gas resources has great potential in exploration and development, and may be the significant complement to conventional oil and gas resources. Based on the summary of the reservoir potential and current situation of exploration and development of unconventional oil and gas resources, such as coalbed methane(CBM), shale gas and oil shale, we analyzed the incentive policies proposed to promote the development of unconventional oil and gas industry, including industrial planning, resource management and related tax policy. These policies played an important role in promoting the exploration, development and utilization of unconventional oil and gas resources.
基金support from National Natural Science Foundation of China(No.52174042)China University of Petroleum Beijing(No.2462021YXZZ011,No.PRP/indep-4-2113)for the completion of this study.
文摘Multiple fractured horizontal wells (MFHWs) currently are the only possible means of commercial production from the low and ultra-low permeability unconventional gas reservoirs. In early production time, flowback fluid, which constitutes of hydraulic water and gas flow within fractures, is collected and analyzed. Flowback analysis has been shown to be a useful tool to estimate key properties of the hydraulic fracture such as conductivity and pore volume. Until date, most tools of flowback analysis rely on empirical and approximate methods. This study presents an improved Green-function-based semi-analytical solution for performance analysis of horizontal gas wells during flowback and early production periods. The proposed solution is derived based on coupling the solutions of two domains: a rigorously derived Green’s function-based integral solution for single-phase gas flow in matrix, and a finite-difference, multiphase solution for gas–water two-phase flow in the fracture. The validity of proposed semi-analytical solution is verified by finely gridded numerical models built in a commercial simulator for a series of synthetic cases considering a variety of fluid and reservoir property combinations, as well as various different production constraints. Comparisons against available empirical and approximate methods are also provided for these cases.
基金financially supported by the National Key Research and Development Programme(Grant Nos.2016ZX05067004-004 and 2016ZX05043005-003)the Chongqing Science and Technology Innovation Leader Talent Support Programme(Grant No.CSTCKJCXLJRC14)。
文摘Nowadays,the unconventional gas-bearing system plays an increasingly important role in energy market.The performances of the current history-matching techniques are not satisfied when applied to such systems.To overcome this shortfall,an alternative approach was developed and applied to investigate production data from an unconventional gas-bearing system.In this approach,the fluid flow curve obtained from the field is the superposition of a series of Gaussian functions.An automatic computing program was developed in the MATLAB,and both gas and water field data collected from a vertical well in the Linxing Block,Ordos Basin,were used to present the data processing technique.In the reservoir study,the automatic computing program was applied to match the production data from a single coal seam,multiple coal seams and multiple vertically stacked reservoirs with favourable fitting results.Compared with previous approaches,the proposed approach yields better results for both gas and water production data and can calculate the contributions from different reservoirs.The start time of the extraction for each gas-containing unit can also be determined.The new approach can be applied to the field data prediction and designation for the well locations and patterns at the reservoir scale.
基金Supported by National Natural Science Foundation of China(52274020,U21B2069,52288101)General Program of the Shandong Natural Science Foundation(ZR2020ME095)National Key Research and Development Program(2021YFC2800803).
文摘A method to generate fractures with rough surfaces was proposed according to the fractal interpolation theory.Considering the particle-particle,particle-wall and particle-fluid interactions,a proppant-fracturing fluid two-phase flow model based on computational fluid dynamics(CFD)-discrete element method(DEM)coupling was established.The simulation results were verified with relevant experimental data.It was proved that the model can match transport and accumulation of proppants in rough fractures well.Several cases of numerical simulations were carried out.Compared with proppant transport in smooth flat fractures,bulge on the rough fracture wall affects transport and settlement of proppants significantly in proppant transportation in rough fractures.The higher the roughness of fracture,the faster the settlement of proppant particles near the fracture inlet,the shorter the horizontal transport distance,and the more likely to accumulate near the fracture inlet to form a sand plugging in a short time.Fracture wall roughness could control the migration path of fracturing fluid to a certain degree and change the path of proppant filling in the fracture.On the one hand,the rough wall bulge raises the proppant transport path and the proppants flow out of the fracture,reducing the proppant sweep area.On the other hand,the sand-carrying fluid is prone to change flow direction near the contact point of bulge,thus expanding the proppant sweep area.
文摘The following article has been retracted due to the investigation of complaints received against it. The Editorial Board found that substantial portions of the text came from other published papers. The scientific community takes a very strong view on this matter, and the Journal of power and Energy Engineering (JPEE) treats all unethical behavior such as plagiarism seriously. This paper published in Vol.2 No.4,297-303(pages), 2014, has been removed from this site.
文摘In accordance with the development concept of 'innovation,coordination,green,openness and sharing' and to promote the supply-side structural reform,CNPC proposes its new goals and strategy in the new era,and expands the overall strategy into ‘resources,market,internationalization and innovation'to adapt to the needs of cleaner energy development in the new era and highlight innovation,openness and green development.It has been seen that through foreign cooperation in the field of unconventional gas,remarkable results have been achieved in the introduction of international advanced concepts,technologies and management experiences.Tight gas and shale gas resources in Central China are abundant but more challenged in geological condition than that in North American,and there are great geological,technical and economic risks.CNPC has achieved significant phased achievements for the development of tight gas and shale gas in Ordos and Sichuan Basin;however,the development quality of unconventional gas assets needs to be further improved.To achieve high-quality development of tight gas and shale gas,on one hand,we must implement the strategy of self-operation and foreign cooperation combination,take advantage of the in tegration of self-operation with foreign cooperation and realize synergetic development;on the other hand,we need to fully understand that the technical characteristics of tight gas and shale gas are different from those of the conventional energy and unconventional technical measures,management strategies and methods are required.