Geophysics has played a significant and efficient role in studying geological structures over the past decades as the goal of geophysical data acquisition is to investigate underground phenomena with the highest possi...Geophysics has played a significant and efficient role in studying geological structures over the past decades as the goal of geophysical data acquisition is to investigate underground phenomena with the highest possible level of accuracy. The ground penetrating radar (GPR) method is used as a nondestructive method to reveal shallow structures by beaming electromagnetic waves through the Earth and recording the received reflections, albeit inevitably, along with random noise. Various types of noise affect GPR data, among the most important of which are random noise resulting from arbitrary motions of particles during data acquisition. Random noise which exists always and at all frequencies, along with coherent noise, reduces the quality of GPR data and must be reduced as much as possible. Over the recent years, discrete wavelet transform has proved to be an efficient tool in signal processing, especially in image and signal compressing and noise suppression. It also allows for obtaining an accurate understanding of the signal properties. In this study, we have used the autoregression in both wavelet and f-x domains to suppress random noise in synthetic and real GPR data. Finally, we compare noise suppression in the two domains. Our results reveal that noise suppression is conducted more efficiently in the wavelet domain due to decomposing the signal into separate subbands and exclusively applying the method parameters in autoregression modeling for each subband.展开更多
Ground roll is an interference wave that severely degrades the signal-to-noise ratio of seismic data and affects its subsequent processing and interpretation.In this study,according to differences in morphological cha...Ground roll is an interference wave that severely degrades the signal-to-noise ratio of seismic data and affects its subsequent processing and interpretation.In this study,according to differences in morphological characteristics between ground roll and reflected waves,we use morphological component analysis based on two-dimensional dictionaries to separate ground roll and reflected waves.Because ground roll is characterized by lowfrequency,low-velocity,and dispersion,we select two-dimensional undecimated discrete wavelet transform as a sparse representation dictionary of ground roll.Because of a strong local correlation of the reflected wave,we select two-dimensional local discrete cosine transform as the sparse representation dictionary of reflected waves.A sparse representation model of seismic data is constructed based on a two-dimensional joint dictionary then a block coordinate relaxation algorithm is used to solve the model and decompose seismic record into reflected wave part and ground roll part.The good effects for the synthetic seismic data and application of real seismic data indicate that when using the model,strong-energy ground roll is considerably suppressed and the waveform of the reflected wave is effectively protected.展开更多
文摘Geophysics has played a significant and efficient role in studying geological structures over the past decades as the goal of geophysical data acquisition is to investigate underground phenomena with the highest possible level of accuracy. The ground penetrating radar (GPR) method is used as a nondestructive method to reveal shallow structures by beaming electromagnetic waves through the Earth and recording the received reflections, albeit inevitably, along with random noise. Various types of noise affect GPR data, among the most important of which are random noise resulting from arbitrary motions of particles during data acquisition. Random noise which exists always and at all frequencies, along with coherent noise, reduces the quality of GPR data and must be reduced as much as possible. Over the recent years, discrete wavelet transform has proved to be an efficient tool in signal processing, especially in image and signal compressing and noise suppression. It also allows for obtaining an accurate understanding of the signal properties. In this study, we have used the autoregression in both wavelet and f-x domains to suppress random noise in synthetic and real GPR data. Finally, we compare noise suppression in the two domains. Our results reveal that noise suppression is conducted more efficiently in the wavelet domain due to decomposing the signal into separate subbands and exclusively applying the method parameters in autoregression modeling for each subband.
基金supported by the National Scientific Equipment Development Project,"Deep Resource Exploration Core Equipment Research and Development"(Grant No.ZDYZ2012-1)06 Subproject,"Metal Mine Earthquake Detection System"and 05 Subject,"System Integration Field Test and Processing Software Development"
文摘Ground roll is an interference wave that severely degrades the signal-to-noise ratio of seismic data and affects its subsequent processing and interpretation.In this study,according to differences in morphological characteristics between ground roll and reflected waves,we use morphological component analysis based on two-dimensional dictionaries to separate ground roll and reflected waves.Because ground roll is characterized by lowfrequency,low-velocity,and dispersion,we select two-dimensional undecimated discrete wavelet transform as a sparse representation dictionary of ground roll.Because of a strong local correlation of the reflected wave,we select two-dimensional local discrete cosine transform as the sparse representation dictionary of reflected waves.A sparse representation model of seismic data is constructed based on a two-dimensional joint dictionary then a block coordinate relaxation algorithm is used to solve the model and decompose seismic record into reflected wave part and ground roll part.The good effects for the synthetic seismic data and application of real seismic data indicate that when using the model,strong-energy ground roll is considerably suppressed and the waveform of the reflected wave is effectively protected.