期刊文献+
共找到414篇文章
< 1 2 21 >
每页显示 20 50 100
Integrated vacuum pressure swing adsorption and Rectisol process for CO_(2) capture from underground coal gasification syngas 被引量:1
1
作者 Jian Wang Yuanhui Shen +2 位作者 Donghui Zhang Zhongli Tang Wenbin Li 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第5期265-279,共15页
An integrated vacuum pressure swing adsorption(VPSA) and Rectisol process is proposed for CO_(2) capture from underground coal gasification(UCG) syngas. A ten-bed VPSA process with silica gel adsorbent is firstly desi... An integrated vacuum pressure swing adsorption(VPSA) and Rectisol process is proposed for CO_(2) capture from underground coal gasification(UCG) syngas. A ten-bed VPSA process with silica gel adsorbent is firstly designed to pre-separate and capture 74.57% CO_(2) with a CO_(2) purity of 98.35% from UCG syngas(CH_(4)/CO/CO_(2)/H_(2)/N_(2)= 30.77%/6.15%/44.10%/18.46%/0.52%, mole fraction, from Shaar Lake Mine Field,Xinjiang Province, China) with a feed pressure of 3.5 MPa. Subsequently, the Rectisol process is constructed to furtherly remove and capture the residual CO_(2)remained in light product gas from the VPSA process using cryogenic methanol(233.15 K, 100%(mass)) as absorbent. A final purified gas with CO_(2) concentration lower than 3% and a regenerated CO_(2) product with CO_(2) purity higher than 95% were achieved by using the Rectisol process. Comparisons indicate that the energy consumption is deceased from 2.143 MJ·kg^(-1) of the single Rectisol process to 1.008 MJ·kg^(-1) of the integrated VPSA & Rectisol process, which demonstrated that the deployed VPSA was an energy conservation process for CO_(2) capture from UCG syngas. Additionally, the high-value gas(e.g., CH_(4)) loss can be decreased and the effects of key operating parameters on the process performances were detailed. 展开更多
关键词 underground coal gasification Vacuum pressure swing adsorption Rectisol process CO_(2)capture Integrated process
下载PDF
贵州无井式UCG选址选层“四性”地质评价模式与资源类型划分
2
作者 周泽 易同生 +3 位作者 秦勇 周永峰 杨磊 汪凌霞 《煤炭学报》 EI CAS CSCD 北大核心 2024年第5期2414-2425,共12页
为建立科学系统的“地质−工程”一体化地质风险评估模式,解决煤炭地下气化(UCG)选址选层难题,提出了一种以“建炉可行性、过程易控性、气化安全性、开发经济性”四性认识为基础,利用FAHP模糊层次分析法创建的包括4项一级指标、10项2级... 为建立科学系统的“地质−工程”一体化地质风险评估模式,解决煤炭地下气化(UCG)选址选层难题,提出了一种以“建炉可行性、过程易控性、气化安全性、开发经济性”四性认识为基础,利用FAHP模糊层次分析法创建的包括4项一级指标、10项2级指标、26项3级关键地质参数的地质评价要素层次结构模型。该模型引入“阈值”概念,对断层指数、奥亚膨胀度、黏结指数、上覆含水层距离4项指标的超“阈值”情况实施“一票否决”,充分重视特定地质参数对UCG控制的关键作用;通过“两两判断矩阵”确定各指标权重向量,根据隶属函数厘定指标层隶属度;并提出了相应地质评价技术方法,配套建立了权重积、综合权重积以及最优3段分割等算法,将所涉及指标量化分析,精准判断资源类型与级别;同时基于矩阵结构混合编码方式,提出了“四性四级”五位编码的UCG资源类型表征系统。最终形成了以“四性”理论为基础,“算法”为骨架,“四性四级”五位编码为灵魂的科学化、系统化UCG选址选层地质评价体系。该评价体系可在多场耦合的UCG生产过程相关风险识别机制的前沿探索方面发挥关键作用,有效改善现有UCG风险识别理论局限于地质单方面,缺乏工程联系的问题,实现大区域的UCG量化选址选层,为省级乃至国家级煤炭地下气化战略规划提供解决途径,从而提出可供分步实施的典型地质条件先导性试验区建议,推动煤炭地下气化产业化进程。 展开更多
关键词 煤炭地下气化 地质评价 资源分类 层次结构模型
下载PDF
Environmental benefits of underground coal gasification 被引量:7
3
作者 LIU Shu qin, LIU Jun hua, YU LI (China University of Mining & Technology, Beijing 100083, China. 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2002年第2期284-288,共5页
Environmental benefits of underground coal gasification are evaluated. The results showed that through underground coal gasification, gangue discharge is eliminated, sulfur emission is reduced, and the amount of ash,... Environmental benefits of underground coal gasification are evaluated. The results showed that through underground coal gasification, gangue discharge is eliminated, sulfur emission is reduced, and the amount of ash, mercury, and tar discharge are decreased. Moreover, effect of underground gasification on underground water is analyzed and CO 2 disposal method is put forward. 展开更多
关键词 environmental benefits coal underground coal gasification
下载PDF
Groundwater Pollution from Underground Coal Gasification 被引量:39
4
作者 LIU Shu-qin LI Jing-gang MEI Mei DONG Dong-lin 《Journal of China University of Mining and Technology》 EI 2007年第4期467-472,共6页
In situ coal gasification poses a potential environmental risk to groundwater pollution although it depends mainly on local hydrogeological conditions. In our investigation,the possible processes of groundwater pollut... In situ coal gasification poses a potential environmental risk to groundwater pollution although it depends mainly on local hydrogeological conditions. In our investigation,the possible processes of groundwater pollution origi-nating from underground coal gasification (UCG) were analyzed. Typical pollutants were identified and pollution con-trol measures are proposed. Groundwater pollution is caused by the diffusion and penetration of contaminants generated by underground gasification processes towards surrounding strata and the possible leaching of underground residue by natural groundwater flow after gasification. Typical organic pollutants include phenols,benzene,minor components such as PAHs and heterocyclics. Inorganic pollutants involve cations and anions. The natural groundwater flow after gasification through the seam is attributable to the migration of contaminants,which can be predicted by mathematical modeling. The extent and concentration of the groundwater pollution plume depend primarily on groundwater flow ve-locity,the degree of dispersion and the adsorption and reactions of the various contaminants. The adsorption function of coal and surrounding strata make a big contribution to the decrease of the contaminants over time and with the distance from the burn cavity. Possible pollution control measures regarding UCG include identifying a permanently,unsuitable zone,setting a hydraulic barrier and pumping contaminated water out for surface disposal. Mitigation measures during gasification processes and groundwater remediation after gasification are also proposed. 展开更多
关键词 groundwater pollution underground coal gasification STRATA
下载PDF
A contrast study on different gasifying agents of underground coal gasification at Huating Coal Mine 被引量:13
5
作者 WANG Zuo-tang HUANG Wen-gang +1 位作者 ZHANG Peng XIN Lin 《Journal of Coal Science & Engineering(China)》 2011年第2期181-186,共6页
To optimize the technological parameter of underground coal gasification (UCG), the experimental results of air gasification, air-steam gasification, oxygen-enrichment steam gasification, pure oxygen steam gasificat... To optimize the technological parameter of underground coal gasification (UCG), the experimental results of air gasification, air-steam gasification, oxygen-enrichment steam gasification, pure oxygen steam gasification and two-stage gasification were studied contrastively based on field trial at the Huating UCG project. The results indicate that the average low heat value of gas from air experiment is the lowest (4.1 MJ/Nm3) and the water gas from two-stage gasification experiment is the highest (10.72 MJ/Nm3). The gas productivity of air gasification is the highest and the pure oxygen steam gasification is the lowest. The gasification efficiency of air gasification, air-steam gasification, oxygen-enriched steam gasification, pure oxygen steam gasification and two-stage gasification is listed in ascending order, ranging from 69.88% to 84.81%. Described a contract study on results of a field test using steam and various levels of oxygen enrichment of 21%, 32%, 42% and 100%. The results show that, with the increasing of O2 content in gasifying agents, the gas caloricity rises, and the optimal O2 concentration range to increase the gas caloricity is 30%-40%. Meanwhile, the consumption of O2 and steam increase, and the air consumption and steam decomposition efficiency fall. 展开更多
关键词 contrast study gasifying agent underground coal gasification ucg field trial
下载PDF
Method of oxygen-enriched two-stage underground coal gasification 被引量:11
6
作者 Liu Hongtao Chen Feng +2 位作者 Pan Xia Yao Kai Liu Shuqin 《Mining Science and Technology》 EI CAS 2011年第2期191-196,共6页
Two-stage underground coal gasification was studied to improve the caloric value of the syngas and to extend gas production times.A model test using the oxygen-enriched two-stage coal gasification method was carried o... Two-stage underground coal gasification was studied to improve the caloric value of the syngas and to extend gas production times.A model test using the oxygen-enriched two-stage coal gasification method was carried out.The composition of the gas produced,the time ratio of the two stages,and the role of the temperature field were analysed.The results show that oxygen-enriched two-stage gasification shortens the time of the first stage and prolongs the time of the second stage.Feed oxygen concentrations of 30%, 35%,40%,45%.60%,or 80%gave time ratios(first stage to second stage) of 1:0.12,1:0.21.1:0.51,1:0.64, 1:0.90.and 1:4.0 respectively.Cooling rates of the temperature field after steam injection decreased with time from about 19.1-27.4℃/min to 2.3-6.8℃/min.But this rate increased with increasing oxygen concentrations in the first stage.The caloric value of the syngas improves with increased oxygen concentration in the first stage.Injection of 80%oxygen-enriched air gave gas with the highest caloric value and also gave the longest production time.The caloric value of the gas obtained from the oxygenenriched two-stage gasification method lies in the range from 5.31 MJ/Nm^3 to 10.54 MJ/Nm^3. 展开更多
关键词 underground coal gasification Enriched oxygen Two-stage gasification Temperature field
下载PDF
A O-dimensional cavity growth submodel for use in reactor models of underground coal gasification 被引量:5
7
作者 Greg Perkins 《International Journal of Coal Science & Technology》 EI 2019年第3期334-353,共20页
Modelling of the underground coal gasification process is dependent upon a range of sub-models. One of the most important is the calculation of the cavity growth rate as a function of various operating conditions and ... Modelling of the underground coal gasification process is dependent upon a range of sub-models. One of the most important is the calculation of the cavity growth rate as a function of various operating conditions and coal properties. While detailed 1-dimensional models of coal block gasification are available, it is not easy to couple them directly with reactor models, which aim to simulate the complete process. In this paper, a O-dimensional cavity growth sub-model is presented. The model is based on the concept of a surface reaction and incorporates physics to account for moisture evaporation, water influx, coal pyrolysis, coal thermo-mechanical fragmentation and the build up of an ash layer on the char. The model is validated using measurements from laboratory experiments on coal cores and coal blocks. A comparison of calculated results from several UCG field trials shows that the model can provide good estimates of cavity growth rate for reasonable input parameters. Finally, simulation results of cavity growth in the combustion and gasification zones as a function of the bulk gas temperature, gas pressure, water influx rate, ash layer thickness and coal fragmentation behaviour are presented. 展开更多
关键词 underground coal gasification CAVITY growth Chemical REACTION
下载PDF
A remining technology of underground coal gasification at Zhongliangshan Coal Mine 被引量:4
8
作者 王作棠 丁学平 +2 位作者 霍礼文 王国雄 Rudolph 《Journal of Coal Science & Engineering(China)》 2008年第3期469-473,共5页
The field trail used a mixture of steam and air with various levels of oxygen en- richment.Steady conditions were achieved in the field trail which produced high quality hydrogen-enriched syngas.To understand and opti... The field trail used a mixture of steam and air with various levels of oxygen en- richment.Steady conditions were achieved in the field trail which produced high quality hydrogen-enriched syngas.To understand and optimize the UCG process,a simplified heat and mass transfer model was presented,providing a predictive tool for temperature and the major constituents of the syngas production.The model is compared with the field trail measurements for air and two levels of oxygen enrichment,showing reasonable agreement for the channel temperature and product syngas concentration profile. 展开更多
关键词 remining technology underground coal gasification ucg field trail controlled moving injector
下载PDF
Large-scale laboratory study on the evolution lawof temperature fields in the context of underground coal gasification 被引量:2
9
作者 Zhe Wang Yongchao Wei +3 位作者 Tengfei Hou Yongchuan Jin Cuilan Wang Jie Liang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第12期3126-3135,共10页
This article presents the evolution law of temperature fields in a large-scale laboratory Underground Coal Gasification reactions using Ulanqab lignite under actual conditions.The results show that in the cultivation ... This article presents the evolution law of temperature fields in a large-scale laboratory Underground Coal Gasification reactions using Ulanqab lignite under actual conditions.The results show that in the cultivation stage of oxidation zone,the main direction of the temperature field expansion is consistent with the crack direction of the coal seam.In the gasification stabilization stage,the main direction of the temperature field expansion is along the channel.The temperature of the coal seam and the overlying rock mass at its interface with the furnace directly above the gasification channel is equivalent to that of the coal seam temperature,and this temperature is much greater than the temperatures observed near both side walls of the gasification channel at the interface.However,temperatures perpendicular to the axis of the gasification channel are similar at a vertical distance of 40 cm away from the interface.The temperature distributions indicate that the transmission of heat through the overlying rock mass is more rapid in the vertical direction than in the horizontal direction.Moreover,some degree of thermal dispersion is observed in the vertical direction near the outlet.The thermal dispersion coefficient is 0.72 and dispersion angle γ is 78.7°. 展开更多
关键词 underground coal gasification Temperature distribution coal seam crack gasification channel Overlying strata
下载PDF
Prediction of cavity growth rate during underground coal gasification using multiple regression analysis 被引量:8
10
作者 Mehdi Najafi Seyed Mohammad Esmaiel Jalali +1 位作者 Reza KhaloKakaie Farrokh Forouhandeh 《International Journal of Coal Science & Technology》 EI 2015年第4期318-324,共7页
During underground coal gasification (UCG), whereby coal is converted to syngas in situ, a cavity is formed in the coal seam. The cavity growth rate (CGR) or the moving rate of the gasification face is affected by... During underground coal gasification (UCG), whereby coal is converted to syngas in situ, a cavity is formed in the coal seam. The cavity growth rate (CGR) or the moving rate of the gasification face is affected by controllable (operation pressure, gasification time, geometry of UCG panel) and uncontrollable (coal seam properties) factors. The CGR is usually predicted by mathematical models and laboratory experiments, which are time consuming, cumbersome and expensive. In this paper, a new simple model for CGR is developed using non-linear regression analysis, based on data from 1 l UCG field trials. The empirical model compares satisfactorily with Perkins model and can reliably predict CGR. 展开更多
关键词 underground coal gasification ucg - Cavity growth rate . Multiple regression analysis ~ Empirical model
下载PDF
Reaction Kinetic Equation for Char Combustion of Underground Coal Gasification 被引量:2
11
作者 YU Hong-guan YANG Lan-he +2 位作者 FENG Wei-min LIU Shu-qin SONG Zhen-qi 《Journal of China University of Mining and Technology》 EI 2006年第2期141-146,共6页
Based on the quasi-steady-state approximation, the dynamic equation of char combustion in the oxidation zone of underground coal gasification (UCG) was derived. The parameters of the dynamic equation were determined a... Based on the quasi-steady-state approximation, the dynamic equation of char combustion in the oxidation zone of underground coal gasification (UCG) was derived. The parameters of the dynamic equation were determined at 900℃ using a thermo-gravimetric (TG) analyzer connected to a flue gas analyzer and this equation. The equation was simplified for specific coals, including high ash content, low ash content, and low ash fusibility ones. The results show that 1) the apparent reaction rate constant increases with an increase in volatile matter value as dry ash-free basis,2) the effective coefficient of diffusion decreases with an increase in ash as dry basis, and 3) the mass transfer coefficient is independent of coal quality on the whole. The apparent reaction rate constant, mass-transfer coefficient and effective coefficient of diffusion of six char samples range from 7.51×104 m/s to 8.98×104 m/s, 3.05×106 m/s to 3.23×106 m/s and 5.36×106 m2/s to 8.23×106 m2/s at 900℃, respectively. 展开更多
关键词 underground coal gasification CHAR COMBUSTION kinetic equation thermo-gravimetric
下载PDF
UCG污染物苯酚在PRB中穿透行为及数值反演
12
作者 王凡 徐冰 +3 位作者 谌伦建 李从强 邢宝林 苏发强 《洁净煤技术》 CAS CSCD 北大核心 2024年第5期155-161,共7页
煤炭地下气化(UCG)是集煤炭开发、转化为一体的煤炭清洁利用技术,但地下水污染风险已成为限制其推广应用的主要瓶颈之一。以有井式UCG为背景,以苯酚溶液为模拟UCG污染水,分别以砂、砂与有机膨润土和砂与活性炭混合材料构建模拟渗透反应... 煤炭地下气化(UCG)是集煤炭开发、转化为一体的煤炭清洁利用技术,但地下水污染风险已成为限制其推广应用的主要瓶颈之一。以有井式UCG为背景,以苯酚溶液为模拟UCG污染水,分别以砂、砂与有机膨润土和砂与活性炭混合材料构建模拟渗透反应墙(PRB)试验系统,利用有限元法和Python科学计算库NumPy及SciPy构建数值反演程序,研究苯酚在PRB中穿透现象。发现:①对充填砂和有机膨润土的PRB,随砂和有机膨润土质量比增加,扩散系数D和渗流速度q增大,弥散度λ和延迟因子R减小;对充填砂和活性炭的PRB,随砂和活性炭质量比增加,扩散系数D、渗流速度q和延迟因子R减小,弥散度λ增大。②混合材料质量比决定其孔隙率和吸附性能,对阻滞净化苯酚影响大。对砂和有机膨润土配制PRB墙体材料,质量比增大,PRB墙体孔隙率增大,苯酚初检时间缩短;对砂和活性炭配制PRB墙体材料,质量比增大,PRB墙体孔隙率减小,苯酚初检时间先增后减。③PRB对苯酚的吸附净化效果与机理:砂与有机膨润土构成墙体材料,其质量比存在阈值(本试验条件阈值2∶1),质量比小于该阈值时PRB对苯酚净化效果好,大于该阈值时净化效果急剧下降;砂与活性炭构成的墙体材料,其质量比小于2∶1时溶液渗流速度占主导作用,质量比大于2∶1时活性炭吸附性能占主导作用。 展开更多
关键词 煤炭地下气化 地下水污染 渗透反应墙 数值反演 有限元
下载PDF
Production of synthetic hydrocarbons from coal through its underground gasification 被引量:1
13
作者 Kreynin Efim Vulfovich 《International Journal of Mining Science and Technology》 SCIE EI 2013年第2期282-288,共7页
The problem of the high-level processing of coal into synthetic motor fuels assumes worldwide actual meaning nowadays. Thereat, it is important especially for countries and regions which possess extensive coal resourc... The problem of the high-level processing of coal into synthetic motor fuels assumes worldwide actual meaning nowadays. Thereat, it is important especially for countries and regions which possess extensive coal resources and are forced to be guided by the import of liquid and gas hydrocarbons. However, a greater emphasis is paid to the given issue in Russia-The development of the federal program for highlevel processing of coal into synthetic motor fuels was initiated. This article describes options of underground coal gasification (UCG) use for the generation of hydrocarbons from UCG gas in the process of the Fischer-Tropsch synthesis (FTS). The technical and economic analysis of the integrated UCG-FTS powerchemical factories has detected their investment attractiveness and practicability of experimental-industrial testing at coal deposits of the Russian Federation. 展开更多
关键词 underground coal gasification (ucg) ucg technology of the new generation Synthetic hydrocarbons Fischer–Tropsch synthesis
下载PDF
A back analysis of the temperature field in the combustion volume space during underground coal gasification 被引量:3
14
作者 Chen Liang Hou Chaohu +1 位作者 Chen Jiansheng Xu Jiting 《Mining Science and Technology》 EI CAS 2011年第4期581-585,共5页
The exact shape and size of the gasification channel during underground coal gasification(UGC) are of vital importance for the safety and stability of the upper parts of the geological formation.In practice existing g... The exact shape and size of the gasification channel during underground coal gasification(UGC) are of vital importance for the safety and stability of the upper parts of the geological formation.In practice existing geological measurements are insufficient to obtain such information because the coal seam is typically deeply buried and the geological conditions are often complex.This paper introduces a cylindrical model for the gasification channel.The rock and soil masses are assumed to be homogeneous and isotropic and the effect of seepage on the temperature field was neglected.The theory of heat conduction was used to write the equation predicting the temperature field around the gasification channel.The idea of an excess temperature was introduced to solve the equations.Applying this model to UCG in the field for an influence radius,r,of 70 m gave the model parameters,u1,2,3...,of 2.4,5.5,8.7...By adjusting the radius(2,4,or 6 m) reasonable temperatures of the gasification channel were found for 4 m.The temperature distribution in the vertical direction,and the combustion volume,were also calculated.Comparison to field measurements shows that the results obtained from the proposed model are very close to practice. 展开更多
关键词 underground coal gasification gasification channel Temperature field Combustion space areaBack analysis
下载PDF
Double Fire-Two Stage Method and Parameter Calculation of Underground Coal Gasification
15
作者 杨兰和 梁杰 余力 《International Journal of Mining Science and Technology》 SCIE EI 2000年第2期11-14,共4页
The double fire two stage method of underground coal gasification was suggested. On the basis of material balance, the ideal gasification parameters were calculated, and the field test process was briefly introduced. ... The double fire two stage method of underground coal gasification was suggested. On the basis of material balance, the ideal gasification parameters were calculated, and the field test process was briefly introduced. In addition, the cause for a middle to a high heat value of water gas was described. And the reasonableness and feasiblity of the method was proved, showing that the double fire two stage gasification is an important technique for commercialized production. 展开更多
关键词 DOUBLE FIRE SOURCES two stage underground coal gasification underground water gas
下载PDF
Semi-Industrial Test of Underground Coal Gasification In Well No.2 in Xinhe, Xuzhou
16
作者 杨兰和 《International Journal of Mining Science and Technology》 SCIE EI 1999年第2期172-175,共4页
The necessity of underground coal gasification is explained. The condition,technology character,and process of the semi-industrial test of underground coal gasification in well No. 2 at Xinhe, Xuzhou,are introduced. T... The necessity of underground coal gasification is explained. The condition,technology character,and process of the semi-industrial test of underground coal gasification in well No. 2 at Xinhe, Xuzhou,are introduced. The test results indicate that the technique of long tunnel,large sectiou,two stage underground coal gasification can obtain a large output of coal gas with a high heat value, making the working process stable. So the feasibility of the new techuology is verified. It can be concluded that there will have a good application prospect of the technique in China. 展开更多
关键词 underground coal gasification semi-industrial test technology long tuunel large section two STAGE XUZHOU Xinhe
下载PDF
Changes in properties of tar obtained during underground coal gasification process
17
作者 Marian Wiatowski Roksana Muzyka +1 位作者 Krzysztof Kapusta Maciej Chrubasik 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第5期1054-1066,共13页
In this study,the composition of tars collected during a six-day underground coal gasification(UCG)test at the experimental mine‘Barbara’in Poland in 2013 was examined.During the test,tar samples were taken every da... In this study,the composition of tars collected during a six-day underground coal gasification(UCG)test at the experimental mine‘Barbara’in Poland in 2013 was examined.During the test,tar samples were taken every day from the liquid product separator and analysed by the methods used for testing properties of typical coke oven(coal)tar.The obtained results were compared with each other and with the data for coal tar.As gasification progressed,a decreasing trend in the water content and an increasing trend in the ash content were observed.The tars tested were characterized by large changes in the residue after coking and content of parts insoluble in toluene and by smaller fluctuations in the content of parts insoluble in quinoline.All tested samples were characterized by very high distillation losses,while for samples starting from the third day of gasification,a clear decrease in losses was visible.A chromatographic analysis showed that there were no major differences in composition between the tested tars and that none of the tar had a dominant component such as naphthalene in coal tar.The content of polycyclic aromatic hydrocarbons(PAHs)in UCG tars is several times lower than that in coal tar.No light monoaromatic hydrocarbons(benzene,toluene,ethylbenzene and xylenes—BTEX)were found in the analysed tars,which results from the fact that these compounds,due to their high volatility,did not separate from the process gas in the liquid product separator. 展开更多
关键词 underground coal gasification ucg Pilot trial TAR BTEX PAHS PHENOLS
下载PDF
An exsitu underground coal gasification experiment with a siderite interlayer:course of the process,production gas,temperatures and energy efficiency
18
作者 Marian Wiatowski Krzysztof Kapusta +2 位作者 Jacek Nowak Marcin Szyja Wioleta Basa 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第6期1447-1460,共14页
A 72-h ex situ hard coal gasification test in one large block of coal was carried out.The gasifying agent was oxygen with a constant flow rate of 4.5 m^(3)/h.The surroundings of coal were simulated with wet sand with ... A 72-h ex situ hard coal gasification test in one large block of coal was carried out.The gasifying agent was oxygen with a constant flow rate of 4.5 m^(3)/h.The surroundings of coal were simulated with wet sand with 11%moisture content.A 2-cm interlayer of siderite was placed in the horizontal cut of the coal block.As a result of this process,gas with an average flow rate of 12.46 m^(3)/h was produced.No direct influence of siderite on the gasification process was observed;however,measurements of CO_(2)content in the siderite interlayer before and after the process allow to determine the location of high-temperature zones in the reactor.The greatest influence on the efficiency of the gasification process was exerted by water contained in wet sand.At the high temperature that prevailed in the reactor,this water evaporated and reacted with the incandescent coal,producing hydrogen and carbon monoxide.This reaction contributes to the relatively high calorific value of the resulting process gas,averaging 9.41 MJ/kmol,and to the high energy efficiency of the whole gasification process,which amounts to approximately 70%. 展开更多
关键词 underground coal gasification ucg Siderite interlayer Water Ex situ HYDROGEN
下载PDF
Underground coal gasification and its strategic significance to the development of natural gas industry in China
19
作者 ZOU Caineng CHEN Yanpeng +3 位作者 KONG Lingfeng SUN Fenjin CHEN Shanshan DONG Zhen 《Petroleum Exploration and Development》 2019年第2期205-215,共11页
Based on the present situation and trend of underground coal gasification in China and overseas, this article puts forward the basic concept, mechanism and mode of underground coal gasification, and presents the chall... Based on the present situation and trend of underground coal gasification in China and overseas, this article puts forward the basic concept, mechanism and mode of underground coal gasification, and presents the challenges, development potential and development path now faced. In China, underground coal gasification which is in accord with the clean utilization of coal can produce "artificial gas", which provides a new strategic approach to supply methane and hydrogen with Chinese characteristics before new energy sources offer large-scale supply. Coal measure strata in oil-bearing basins are developed in China, with 3.77 trillion tons coal reserves for the buried depth of 1000-3 000 m. It is initially expected that the amount of natural gas resources from underground coal gasification to be 272-332 trillion cubic meters, which are about triple the sum of conventional natural gas, or equivalent to the total unconventional natural gas resources. According to the differences of coal reaction mechanism and product composition of underground coal gasification, the underground coal gasification can be divided into three development modes, hydrogen-rich in shallow, methane-rich in medium and deep,supercritical hydrogen-rich in deep. Beyond the scope of underground mining of coal enterprises, petroleum and petrochemical enterprises can take their own integration advantages of technologies, pipeline, market and so on, to develop underground coal gasification business based on their different needs and technical maturity, to effectively exploit a large amount of coal resources cleanly and to alleviate the tight supply of natural gas. It can also be combined with using the produced hydrogen in nearby area and the CO_2 flooding and storage in adjacent oil areas to create a demonstration zone for net zero emissions of petroleum and petrochemical recycling economy. It is significant for reserving resources and technologies for the coming "hydrogen economy" era, and opening up a new path for China's "clean, low carbon, safe and efficient" modern energy system construction. 展开更多
关键词 coal underground coal gasification natural GAS GAS revolution coal-made methane coal-made hydrogen SUPERCRITICAL WATER SUPERCRITICAL WATER gasification
下载PDF
国内外煤炭地下气化(UCG)技术调研综述
20
作者 陈飞 侯汶甫 +4 位作者 陈朝刚 刘岩 贺英 何强 王子嘉 《四川化工》 CAS 2024年第5期35-39,共5页
煤炭地下气化(UCG)技术通过将气化剂注入地下煤层,生成合成气供能源或化工利用,具有高效、低碳等优点。综述国内外UCG技术的发展历程、技术进展、应用现状、面临的挑战及未来发展方向。国外方面,美国、苏联及欧盟国家通过长期试验和技... 煤炭地下气化(UCG)技术通过将气化剂注入地下煤层,生成合成气供能源或化工利用,具有高效、低碳等优点。综述国内外UCG技术的发展历程、技术进展、应用现状、面临的挑战及未来发展方向。国外方面,美国、苏联及欧盟国家通过长期试验和技术探索,形成了现代UCG技术体系,但仍面临气化通道稳定性、环境污染等挑战。国内UCG技术研究起步较晚,但在国家科技计划支持下,近年来在气化通道建设、气化过程控制等方面取得显著进展,并成功建成多个示范工程。然而,UCG技术的产业化进程仍面临地质条件复杂、技术难度高及经济投入大等挑战。未来,需加大技术创新和研发投入,推动示范项目和商业化应用,加强国际合作与交流,并注重环境保护和生态安全,以实现UCG技术的可持续发展,为能源结构转型和可持续发展战略提供重要支撑。 展开更多
关键词 煤炭地下气化(ucg) 技术进展 技术难点与挑战 未来发展方向
下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部