Three tracing tests from the same injection point executed at low, medium, and high water levels in the karst aquifer near Tianshengan village, Lunan Stone Forest, Yunnan Province, China, have revealed the basic prope...Three tracing tests from the same injection point executed at low, medium, and high water levels in the karst aquifer near Tianshengan village, Lunan Stone Forest, Yunnan Province, China, have revealed the basic properties of underground water flow. They showed the general directions of water flows; tracer concentrations were observed at six successive points allowing for the calculation of apparent dominant flow velocities at these sections towards the Dalongtan karst spring. For the high water level, the discharge between single sections was between two and 10 times greater than that at low water level. For the medium water level, the flow velocity at different sections was between 1.4 and 3.7 times faster than that at low water level; and for high water level, it was between 1.3 and 2.7 times faster than that at medium water level. The fastest water flow appeared at the first section (23 cm/s at medium water level); and the slowest (0.6 cm/s at low water level) appeared where water flow must cross the Tianshengan fault (north-south direction), and later, a layer of 20-30 m thickness of quartz sandstone and shale clay-stones. It was also possible to calculate the recovery of the tracer for point 4, Dakenyan, where discharge was measured. At the medium water level, 50% of the injected tracer was detected a half-day after its first appearance and at low water level after more than 3 days. The previously published research illustrates the transport velocities of possible contaminants and their solubilities in water at different hydrological conditions.展开更多
The aim of this study is to shed light on the hydrogeochemical characteristics of karst underground waters at shallow depth in Guiyang City, Guizhou Province with an emphasis on the geochemistry of major elements. Gui...The aim of this study is to shed light on the hydrogeochemical characteristics of karst underground waters at shallow depth in Guiyang City, Guizhou Province with an emphasis on the geochemistry of major elements. Guiyang City bears abundant underground waters and it is also an important representative of the karst areas throughout the world. Ca+{2+} and Mg+{2+} are the dominant cations, accounting for 81%-{99.7%} of the total, and HCO+--3 and SO+{2-}-4 are the dominant anions. Weathering of limestones and dolostones is the most important factor controlling the hydrogeochemistry of underground waters, and weathering of sulfate and evaporite rocks is less important. Moreover, the precipitation and human activities also have a definite influence on the hydrogeochemistry of underground waters in the region studied.展开更多
Abstract Karst areas have much higher ecological vulnerability and are easy to be contaminated by polychlorinated biphenyls(PCBs) which are introduced as health risk pollutants.PCBs concentrations were used to underst...Abstract Karst areas have much higher ecological vulnerability and are easy to be contaminated by polychlorinated biphenyls(PCBs) which are introduced as health risk pollutants.PCBs concentrations were used to understand the transport behavior of PCBs conducted in the karst Nanshan Underground River,China.Water and sediments from the underground river water,and sediments and soil from the surface of the corresponding watershed were collected monthly in 2011 and 2012 and PCBs were analyzed.Seasonal variations were found in concentrations of PCBs both in the waters and sediments.PCBs concentrations varied from 0.3 to 29.9 ng·L-1 in the groundwater,while from 0.1 to 366.1 ng·g-1 in the underground sediments.Correlations were found in concentrations of PCBs in waters and sediments between the underground river and surface systems which indicate that the surface systems play a major role for the transport of PCBs and contamination in the underground river systems.Karst features are liable for the transport behavior.The underground river waters transport PCBs at mean 3 g·day-1.展开更多
文摘Three tracing tests from the same injection point executed at low, medium, and high water levels in the karst aquifer near Tianshengan village, Lunan Stone Forest, Yunnan Province, China, have revealed the basic properties of underground water flow. They showed the general directions of water flows; tracer concentrations were observed at six successive points allowing for the calculation of apparent dominant flow velocities at these sections towards the Dalongtan karst spring. For the high water level, the discharge between single sections was between two and 10 times greater than that at low water level. For the medium water level, the flow velocity at different sections was between 1.4 and 3.7 times faster than that at low water level; and for high water level, it was between 1.3 and 2.7 times faster than that at medium water level. The fastest water flow appeared at the first section (23 cm/s at medium water level); and the slowest (0.6 cm/s at low water level) appeared where water flow must cross the Tianshengan fault (north-south direction), and later, a layer of 20-30 m thickness of quartz sandstone and shale clay-stones. It was also possible to calculate the recovery of the tracer for point 4, Dakenyan, where discharge was measured. At the medium water level, 50% of the injected tracer was detected a half-day after its first appearance and at low water level after more than 3 days. The previously published research illustrates the transport velocities of possible contaminants and their solubilities in water at different hydrological conditions.
文摘The aim of this study is to shed light on the hydrogeochemical characteristics of karst underground waters at shallow depth in Guiyang City, Guizhou Province with an emphasis on the geochemistry of major elements. Guiyang City bears abundant underground waters and it is also an important representative of the karst areas throughout the world. Ca+{2+} and Mg+{2+} are the dominant cations, accounting for 81%-{99.7%} of the total, and HCO+--3 and SO+{2-}-4 are the dominant anions. Weathering of limestones and dolostones is the most important factor controlling the hydrogeochemistry of underground waters, and weathering of sulfate and evaporite rocks is less important. Moreover, the precipitation and human activities also have a definite influence on the hydrogeochemistry of underground waters in the region studied.
基金financially supported by the National Natural Science Foundation of China(Grant No.41172331)the Academician Foundation of Chongqing(CSTC,2010BC7004)Geological survey project of Ministry of Land and Resources of China(1212011087119)
文摘Abstract Karst areas have much higher ecological vulnerability and are easy to be contaminated by polychlorinated biphenyls(PCBs) which are introduced as health risk pollutants.PCBs concentrations were used to understand the transport behavior of PCBs conducted in the karst Nanshan Underground River,China.Water and sediments from the underground river water,and sediments and soil from the surface of the corresponding watershed were collected monthly in 2011 and 2012 and PCBs were analyzed.Seasonal variations were found in concentrations of PCBs both in the waters and sediments.PCBs concentrations varied from 0.3 to 29.9 ng·L-1 in the groundwater,while from 0.1 to 366.1 ng·g-1 in the underground sediments.Correlations were found in concentrations of PCBs in waters and sediments between the underground river and surface systems which indicate that the surface systems play a major role for the transport of PCBs and contamination in the underground river systems.Karst features are liable for the transport behavior.The underground river waters transport PCBs at mean 3 g·day-1.