期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effects of thinning and understory removal on water use efficiency of Pinus massoniana:evidence from photosynthetic capacity and stable carbon isotope analyses
1
作者 Ting Wang Qing Xu +4 位作者 Beibei Zhang Deqiang Gao Ying Zhang Jing Jiang Haijun Zuo 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期42-53,共12页
Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and... Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and its key controlling processes are not well understood,which limits our comprehension of the physiological mechanisms of various management practices.In this study,four forest management measures(no thinning:NT;understory removal:UR;light thinning:LT;and heavy thinning:HT)were carried out in Pinus massoniana plantations in a subtropical region of China.Photosynthetic capacity and needle stable carbon isotope composition(δ^(13)C)were measured to assess instantaneous water use efficiency(WUE_(inst))and long-term water use efficiency(WUE_(i)).Multiple regression models and structural equation modelling(SEM)identified the effects of soil properties and physiological performances on WUE_(inst)and WUE_(i).The results show that WUE_(inst)values among the four treatments were insignificant.However,compared with the NT stand(35.8μmol·mol^(-1)),WUE_(i)values significantly increased to 41.7μmol·mol^(-1)in the UR,50.1μmol·mol^(-1)in the LT and 46.6μmol·mol^(-1)in HT treatments,largely explained by photosynthetic capacity and soil water content.Understory removal did not change physiological performance(needle water potential and photosynthetic capacity).Thinning increased the net photosynthetic rate(A_n)but not stomatal conductance(g_s)or predawn needle water potential(ψ_(pd)),implying that the improvement in water use efficiency for thinned stands was largely driven by radiation interception than by soil water availability.In general,thinning may be an appropriate management measure to promote P.massoniana WUE to cope with seasonal droughts under future extreme climates. 展开更多
关键词 Stable carbon isotope Water use efficiency THINNING understory removal Photosynthetic capacity Needle water potential
下载PDF
Interactive effects of understory removal and fertilization on soil respiration in subtropical Eucalyptus plantations 被引量:6
2
作者 Songze Wan Chenlu Zhang +7 位作者 Yuanqi Chen Jie Zhao Xiaolin Zhu Jianping Wu Lixia Zhou Yongbiao Lin Zhanfeng Liu Shenglei Fu 《Journal of Plant Ecology》 SCIE 2015年第3期284-290,共7页
Aims It has been well recognized that understory vegetation plays an important role in driving forest ecosystem processes and functioning.In subtropical plantation forests,understory removal and fertiliza-tion have be... Aims It has been well recognized that understory vegetation plays an important role in driving forest ecosystem processes and functioning.In subtropical plantation forests,understory removal and fertiliza-tion have been widely applied;however,our understanding on how understory removal affects soil respiration and how the process is regulated by fertilization is limited.Here,we conducted an under-story removal experiment combined with fertilization to evaluate the effects of the two forest management practices and their inter-actions on soil respiration in subtropical forest in southern China.Methods The study was conducted in a split-plot design with fertilization as the whole-plot factor,understory removal as the subplot factor and block as the random factor in subtropical Eucalyptus plantations.In total,there were four treatments:control with unfertilized and intact understory(CK),understory removal but without fertilization(UR),with fertilization but without understory removal(FT)and with fertilization+understory removal(FT+UR).Eucalyptus above-and belowground biomass increment,fine root biomass,soil tempera-ture,soil moisture and soil respiration were measured in the present study.understory respiration(Ru)was quantified in different ways:Ru=RCK−Ru or Ru=RFT−R(FT+u);fertilization increased soil respiration(RFI)was also quantified in different ways:RFI=RFT−RCK or RFI=R(FT+u)−Ru.Important Findingsover a 2-year experiment,our data indicate that understory removal significantly decreased soil respiration,while fertilization increased soil respiration.understory removal decreased soil respiration by 28.8%under fertilization,but only 15.2%without fertilization.Fertilization significantly increased soil respiration by 23.6%with the presence of understory vegetation,and only increased by 3.7%when understory was removed,indicating that fertilization increased soil respiration mainly by increasing the contribution of the understory.our study advances our understanding of the interactive effects of understory management and fertilization on soil respiration in subtropical plantations. 展开更多
关键词 understory removal FERTILIZATION interactive effects soil respiration subtropical plantation
原文传递
Forest soil CO_2 fluxes as a function of understory removal and N-fixing species addition 被引量:3
3
作者 Haifang Li Shenglei Fu +1 位作者 Hongting Zhao Hanping Xia 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2011年第6期949-957,共9页
We report on the effects of forest management practices of understory removal and N-fixing species(Cassia alata) addition on soil CO2 fluxes in an Eucalyptus urophylla plantation(EUp),Acacia crassicarpa plantation... We report on the effects of forest management practices of understory removal and N-fixing species(Cassia alata) addition on soil CO2 fluxes in an Eucalyptus urophylla plantation(EUp),Acacia crassicarpa plantation(ACp),10-species-mixed plantation(Tp),and 30-species-mixed plantation(THp) using the static chamber method in southern China.Four forest management treatments,including(1) understory removal(UR);(2) C.alata addition(CA);(3) understory removal and replacement with C.alata(UR+CA);and(4) control without any disturbances(CK),were applied in the above four forest plantations with three replications for each treatment.The results showed that soil CO2 fluxes rates remained at a high level during the rainy season(from April to September),followed by a rapid decrease after October reaching a minimum in February.Soil CO2 fluxes were significantly higher(P 〈 0.01) in EUp(132.6 mg/(m2.hr)) and ACp(139.8 mg/(m2.hr)) than in Tp(94.0 mg/(m2.hr)) and THp(102.9 mg/(m2.hr)).Soil CO2 fluxes in UR and CA were significantly higher(P 〈 0.01) among the four treatments,with values of 105.7,120.4,133.6 and 112.2 mg/(m2.hr) for UR+CA,UR,CA and CK,respectively.Soil CO2 fluxes were positively correlated with soil temperature(P 〈 0.01),soil moisture(P 〈 0.01),NO3?-N(P 〈 0.05),and litterfall(P 〈 0.01),indicating that all these factors might be important controlling variables for soil CO2 fluxes.This study sheds some light on our understanding of soil CO2 flux dynamics in forest plantations under various management practices. 展开更多
关键词 soil C02 fluxes forest management practices understory removal N-fixing species addition forest plantation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部