This article studies the application of the alternating current field measurement (ACFM) method in defect detection for underwater structures. Numerical model of the ACFM system is built for structure surface defect...This article studies the application of the alternating current field measurement (ACFM) method in defect detection for underwater structures. Numerical model of the ACFM system is built for structure surface defect detection in seawater environment. Finite element simulation is performed to investigate rules and characteristics of the electromagnetic signal distribution in the defected area. In respect of the simulation results, underwater artificial crack detection experiments are designed and conducted for the ACFM system. The experiment results show that the ACFM system can detect cracks in underwater structures and the detection accuracy is higher than 85%. This can meet the engineering requirement of underwater structure defect detection. The results in this article can be applied to establish technical foundation for the optimization and development of ACFM based underwater structure defects detection system.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.50905187)the Shandong Provincial Natural Science Foundation(Grant No.ZR2009FQ001)
文摘This article studies the application of the alternating current field measurement (ACFM) method in defect detection for underwater structures. Numerical model of the ACFM system is built for structure surface defect detection in seawater environment. Finite element simulation is performed to investigate rules and characteristics of the electromagnetic signal distribution in the defected area. In respect of the simulation results, underwater artificial crack detection experiments are designed and conducted for the ACFM system. The experiment results show that the ACFM system can detect cracks in underwater structures and the detection accuracy is higher than 85%. This can meet the engineering requirement of underwater structure defect detection. The results in this article can be applied to establish technical foundation for the optimization and development of ACFM based underwater structure defects detection system.