The helical undulator is in high demand in synchrotron radiation facilities for circular polarization generation.Owing to the higher field strength provided by the superconducting undulator compared to the conventiona...The helical undulator is in high demand in synchrotron radiation facilities for circular polarization generation.Owing to the higher field strength provided by the superconducting undulator compared to the conventional permanent-magnet undulator,greater research efforts should be directed toward this area.The helical superconducting undulator holds great potential in synchrotron radiation facilities,especially in low-energy storage rings that seek circularly polarized radiation with the highest possible radiation flux.Following the successful development of planar superconducting undulators,the Institute of High Energy Physics conducted research and development for the helical superconducting undulator.A 0.5-m-long Deltatype superconducting undulator prototype was developed and tested.Detailed information on the design,fabrication,and cryogenic testing of the prototype is presented and discussed.展开更多
Biological undulation enables legless creatures to move naturally,and robustly in various environments.Consequently,many kinds of undulating robots have been developed.However,the fundamental mechanism of biological u...Biological undulation enables legless creatures to move naturally,and robustly in various environments.Consequently,many kinds of undulating robots have been developed.However,the fundamental mechanism of biological undulation gait generation has not yet been well explained,which hinders deepening the investigation and optimization of these robots.Towards developing a theory for explaining this biological behavior,which will further guide the design of artificial undulation systems,we propose a hypothesis based on both biological findings and previous robotics studies.To verify the hypothesis,we investigate embodied intelligence of undulation locomotion via a mechanical system.Through experimental study,we observe the phenomenon that undulation gait is a production of the source,which is the torque inputs,and the filter,which is the natural dynamics of the system.We further derive a general mathematical model and conduct morphological computation accordingly.From a simple model to a complicated system,our work explores the principles of undulation gait generation.Our findings significantly simplify the control system design of artificial undulating systems.展开更多
Geode, boudinage, and undulation structures are widely distributed in the siliceous beds of the Upper Cretaceous/Tertiary rocks in Jordan. Their formation was attributed to tectonic forces, syngenetic processes, organ...Geode, boudinage, and undulation structures are widely distributed in the siliceous beds of the Upper Cretaceous/Tertiary rocks in Jordan. Their formation was attributed to tectonic forces, syngenetic processes, organic disintegration processes, subaquatic gliding, compaction and settlement, and meteoritic impacts. In this work, the structural features in the siliceous beds of Jordan are attributed to an interplay of load and directed pressures, and mineralogical transformation processes (opal-A to opal-CT to quartz), governed by pH changes. Tectonic directed pressure was acting in an ESE-WSW direction and is common in the silicified limestone of Upper Cretaceous.展开更多
APPLE-Knot undulator can effectively solve the on-axis heat load problem and is proven to perform well in VUV beamline and soft x-ray beamline in high energy storage ring. However, for soft x-ray beamline in a medium ...APPLE-Knot undulator can effectively solve the on-axis heat load problem and is proven to perform well in VUV beamline and soft x-ray beamline in high energy storage ring. However, for soft x-ray beamline in a medium energy ring,whether the APPLE-Knot undulator excels the APPLE undulator is still a question. Here, a merged APPLE-Knot undulator is studied to generate soft x-ray in a medium energy ring. Its advantages and problems are discussed. Though the on-axis heat load of the APPLE-Knot undulator is lower in linear polarization modes compared to the APPLE undulator, its flux is lower. The APPLE-Knot undulator shows no advantage when only fundamental harmonic is needed. However, in circular polarization mode, the APPLE-Knot undulator shows the ability to cover a broader energy range which can remedy the notable shortcoming of the APPLE undulator.展开更多
Brucellosis is an old, infectious and common zoonosis whose causative agents are Gramnegative bacteria from the Brucella genus. Brucellosis is transmitted through direct contactwith infected animals or using unpasteur...Brucellosis is an old, infectious and common zoonosis whose causative agents are Gramnegative bacteria from the Brucella genus. Brucellosis is transmitted through direct contactwith infected animals or using unpasteurized dairy products of goats, pigs, camels, sheep,buffalo and cows. Brucellosis is still the most common zoonosis in the world, with mostof cases occurring in developing countries. Today, an approach to traditional medicine andmedicinal plants, especially with regards to the repeated recommendations of the World HealthOrganization, is a necessity. One-third of chemical drugs are produced by using plants andthere is a high potential to produce more drugs from plants. Medicinal plants are helpful inthe management of various conditions, especially bacterial diseases. Although there is notenough scientific evidence regarding the clinical effectiveness of herbal drugs for the treatmentof brucellosis, there is strong evidence on the antimicrobial effects of herbal drugs to preventinfection. Therefore, this article seeks to describe the antibacterial effects of some plantderived essential oils or extracts, so that they can serve as promising choices to develop newanti-Brucella medications, as suitable alternatives to conventional antibiotics for brucellosis, asmuch as possible, taking into account the benefits of these herbal drugs.展开更多
Engineering seismic exploration aims at shallow imaging which is confused by statics if the surface is uneven. Direct pre-stack depth migration (DPDM) is based on accurate elevations of sources and receivers, by whi...Engineering seismic exploration aims at shallow imaging which is confused by statics if the surface is uneven. Direct pre-stack depth migration (DPDM) is based on accurate elevations of sources and receivers, by which static correction is completely abandoned before migration and surely the imaging quality is remarkably improved. To obtain some artificial shot gathers, high-order staggered-grid finite-difference (FD) method is adapted to model acoustic wave propagation. Since the shot gathers are always disturbed by regular interferences, the statics still must be applied to supporting the interference elimination by apparent velocity filtering method. Then all the shot gathers should be removed back to their original positions by reverse statics. Finally, they are migrated by pre-stack reverse-time depth migration and imaged. The numerical experiments show that the DPDM can ideally avoid the mistakes caused by statics and increase imaging precision.展开更多
Objective: To investigate the prevalence and risk factors of brucellosis in human and animal’s communities in southern Saudi Arabia.Methods: A cross-sectional sero-epidemiological study was conducted in Aseer and Jaz...Objective: To investigate the prevalence and risk factors of brucellosis in human and animal’s communities in southern Saudi Arabia.Methods: A cross-sectional sero-epidemiological study was conducted in Aseer and Jazan, Saudi Arabia(October 2017-October 2018). Human serum samples(n=339) were initially screened for Brucella antibodies and positive samples were further titrated for Brucella antibodies by immunocapture assay(titer of ≥1:320 as positive). Animal samples(n=828) were screened using the Rose Bengal test. Relationship status was dichotomized to measure and predict independent contributions to variations in human using univariate and multivariate stepwise binary logistic regression model. Results: The rate of brucellosis among the 339 human samples in the two regions was 33.9%, and the rate of acute brucellosis was 12.4%. The rate of brucellosis in animals was 4.7%. Human brucellosis among the target groups was higher in northwestern Aseer(53.3%) compared to Southeastern Aseer(25.9%) and Jazan region(20.6%). The disease was more prevalent among non-Saudi nationals(35.2%) compared to Saudis(30.5%). The rate of brucellosis among butchers and shepherds was 37.5% and 37.2%, respectively. The rate of brucellosis was 37.8% in people over 30 years of age. Our univariate analysis showed that residing in Aseer region(OR: 2.60, 95% CI: 1.50-4.40), especially residing in northwestern Aseer region(OR: 4.40, 95% CI: 2.40-7.90), frequent consumption of raw meat(OR: 2.90, 95% CI: 1.50-5.50), shepherds(OR: 2.10, 95% CI: 0.80-5.30), owning sheep(OR: 2.20, 95% CI: 1.10-4.40), daily contact with animals(OR: 2.10, 95% CI: 0.75-5.80), and those > 30-year-old(OR: 1.50, 95% CI: 1.00-2.40) were significantly associated with increased risks of brucellosis. Our multivariate analysis further showed that residing in northwestern Aseer(OR: 9.16, 95% CI: 3.39-24.76) and having sheep(OR: 1.16, 95% CI: 1.00-1.35) were significant and independent risks of brucellosis while residing in agricultural region(OR: 0.28, 95% CI: 0.10-0.78) was a significant and independent protector against brucellosis.Conclusions: The study concluded that residing in northwestern Aseer area and having animals(sheep) are associated with significantly increased risks of brucellosis.展开更多
Most of the current computing methods used to determine the magnetic field of a uniformly magnetized cuboid assume that the observation point is located in the upper half space without a source. However, such methods ...Most of the current computing methods used to determine the magnetic field of a uniformly magnetized cuboid assume that the observation point is located in the upper half space without a source. However, such methods may generate analytical singularities for conditions of undulating terrain. Based on basic geomagnetic field theories, in this study an improved magnetic field expression is derived using an integration method of variable substitution, and all singularity problems for the entire space without a source are discussed and solved. This integration process is simpler than that of previous methods, and final integral results with a more uniform form. AT at all points in the source-flee space can be calculated without requiring coordinate transformation; thus forward modeling is also simplified. Corresponding model tests indicate that the new magnetic field expression is more correct because there is no analytical singularity and can be used with undulating terrain.展开更多
First-break picking is the key step in seismic data processing for surveying undulate surfaces, and directly infl uences the precision of near-surface modeling and effects of static corrections. The current first-brea...First-break picking is the key step in seismic data processing for surveying undulate surfaces, and directly infl uences the precision of near-surface modeling and effects of static corrections. The current first-break auto-picking methods may fail when the signalto-noise ratio(SNR) is low for seismic data in the undulate area, and require labor and time intensive manual picking. This study develops an improved super-virtual interferometry(SVI) method that combines multichannel and multidomain quality control(MMQC) techniques to achieve auto-picked first breaks. The improved SVI method extends the SVI application to enhance the SNR for near-surface scattered waves for the first time, which allows for the SVI method to adapt to first breaks with complex raypaths by linear combination of refractions and near-surface scattered waves. Methods of inverse and multidomain interferometry are developed to effectively enhance the virtual records extracted by the SVI method. The deconvolution filter for waveforms is used to increase resolution and reduce false picks, while the MMQC technique is designed to auto-correct false picks and increase the stability of auto-picking first breaks. The robust technique developed in this study enables stable processing of large 3D seismic datasets. Higher quality results are obtained using the approach presented in this paper to actual field data from the mountain areas in western China, when compared to some commonly used commercial software.展开更多
The undulating fin propulsion system is an instance of the bio-inspired propulsion systems. In the current study, the swimming motion of a squid-like robot with two undulating side fins, mimicking those of a Stingray ...The undulating fin propulsion system is an instance of the bio-inspired propulsion systems. In the current study, the swimming motion of a squid-like robot with two undulating side fins, mimicking those of a Stingray or a Cuttlefish, was investigated through flow computation around the body. We used the finite analytic method for space discretization and Euler implicit scheme for time discretization along with the PISO algorithm for velocity pressure coupling. A body-fitted moving grid was generated using the Poisson equation at each time step. Based on the computed results, we discussed the features of the flow field and hydrodynamic forces acting on the body and fin. A simple relationship among the fin's principal dimensions was established. Numerical computation was done for various aspect ratios, fin angles and frequencies in order to validate the proposed relationship among principal dimensions. Subsequently, the relationship was examined base on the distribution of pressure difference between upper and lower surfaces and the distribution of the thrust force. In efficiency calculations, the undulating fins showed promising results. Finally, for the fin, the open characteristics from computed data showed satisfactory conformity with the experimental results.展开更多
Biomimetic design employs the principles of nature to solve engineering problems. Such designs which are hoped to be quick, efficient, robust, and versatile, have taken advantage of optimization via natural selection....Biomimetic design employs the principles of nature to solve engineering problems. Such designs which are hoped to be quick, efficient, robust, and versatile, have taken advantage of optimization via natural selection. In the present research, an environment-friendly propulsion system mimicking undulating fins of stingray was built. A non-conventional method was considered to model the flexibility of the fins of stingray. A two-degree-of-freedom mechanism comprised of several linkages was designed and constructed to mimic the actual flexible fin, The driving linkages were used to form a mechanical fin consisting of several fin segments, which are able tO produce undulations, similar to those produced by the actual fins. Owing to the modularity of the design of the mechanical fin, various undulating patterns can be realized. Some qualitative observations, obtained by experiments, predicted that the thrusts produced by the mechanical fin are different among various undulating patterns. To fully understand this experimental phenomenon is very important for better performance and energy saving for our biorobotic underwater propulsion system. Here, four basic undulating patterns of the mechanical fin were performed using two-dimensional unsteady computational fluid dynamics (CFD) method. An unstructured, grid-based, unsteady Navier-Stokes solver with automatic adaptive re-meshing was used to compute the unsteady flow around the fin through twenty complete cycles. The pressure distribution on fin surface was computed and integrated to provide fin forces which were decomposed into rift and thrust. The pressure force and friction force were also computed throughout the swimming cycle. Finally, vortex contour maps of these four basic fin undulating patterns were displayed and compared.展开更多
Unfavorable fishy odour is an inevitable problem in aquatic products. In the present study, headspace solid-phase mi- croextraction gas chromatography mass spectrometry (HS-SPME-GC-MS) analysis of volatiles from unt...Unfavorable fishy odour is an inevitable problem in aquatic products. In the present study, headspace solid-phase mi- croextraction gas chromatography mass spectrometry (HS-SPME-GC-MS) analysis of volatiles from untreated samples and three deodorized samples (under the optimal conditions) ofPaphia undulata enzymatic hydrolysate revealed that the compounds contrib- uting to the distinctive odor were 1-octen-3-ol, n-hexanal, n-heptanal, 2,4-heptadienal, and 2,4-decadienal, whereas n-pentanal, n-octanal, n-octanol, benzaldehyde, 2-ethylfuran and 2-pentylfuran were the main contributors to the aromatic flavor. The deodoriz- ing effects of activated carbon (AC) adsorption, yeast extract (YE) masking and tea polyphenol (TP) treatment on a P. undulata en- zymatic hydrolysate were investigated using orthogonal experiments with sensory evaluation as the index. The following optimized deodorization conditions were obtained: AC adsorption (35 mg mL-1, 80℃, 40 rain), YE masking (7 mgmL l, 45 ℃, 30 min) and TP treatment (0.4mgmL-l, 40℃, 50min). AC adsorption effectively removed off-flavor volatile aldehydes and ketones. YE masking modified the odor profile by increasing the relative contents of aromatic compounds and decreasing the relative contents of aldehydes and ketones. The TP treatment was not effective in reducing the odor score, but it significantly reduced the relative content of alde- hydes while increasing that of alkanes. It is also notable that TP effectively suppressed trimethylamine (TMA) formation in a P. un- dulate hydrolysate solution for a period of 72 h.展开更多
In this paper, a carangiform robotic fish with 4-DoF (degree of freedom) tail has been developed. The robotic fish has capability of swimming under two modes that are radio control and autonomous swimming. Experimen...In this paper, a carangiform robotic fish with 4-DoF (degree of freedom) tail has been developed. The robotic fish has capability of swimming under two modes that are radio control and autonomous swimming. Experiments were conducted to investigate the influences of characteristic parameters including the frequency, the amplitude, the wave length, the phase difference and the coefficient on forward velocity. The experimental results shown that the swimming performance of the robotic fish is affected mostly by the characteristic parameters observed.展开更多
The periodic undulation of a molten track’s height profile in laser-based powder bed fusion of metals(PBF-LB/M)is a commonly observed phenomena that can cause defects and building failure during the manufacturing pro...The periodic undulation of a molten track’s height profile in laser-based powder bed fusion of metals(PBF-LB/M)is a commonly observed phenomena that can cause defects and building failure during the manufacturing process.However a quantitative analysis of such instabilities has not been fully established and so here we used Rayleigh–Plateau theory to determine the stability of a single molten track in PBF-LB/M and tested it with various processing conditions by changing laser power and beam shape.The analysis discovered that normalized enthalpy,which relates to energy input density,determines whether a molten track is initially unstable and if so,the growth rate for the instability.Additionally,whether the growth rate ultimately yields significant undulation depends on the melt duration,estimated by dwell time in our experiment.展开更多
基金supported by the National Natural Science Foundation of China(No.E1113R5C10)。
文摘The helical undulator is in high demand in synchrotron radiation facilities for circular polarization generation.Owing to the higher field strength provided by the superconducting undulator compared to the conventional permanent-magnet undulator,greater research efforts should be directed toward this area.The helical superconducting undulator holds great potential in synchrotron radiation facilities,especially in low-energy storage rings that seek circularly polarized radiation with the highest possible radiation flux.Following the successful development of planar superconducting undulators,the Institute of High Energy Physics conducted research and development for the helical superconducting undulator.A 0.5-m-long Deltatype superconducting undulator prototype was developed and tested.Detailed information on the design,fabrication,and cryogenic testing of the prototype is presented and discussed.
基金supported by Fundamental Research Funds for the Central Universities,China(ZY2301,BH2316,buctrc202215)the National Natural Science Foundation of China(62273340)the Natural Science Foundation of China Liaoning Province(2021-MS-031).
文摘Biological undulation enables legless creatures to move naturally,and robustly in various environments.Consequently,many kinds of undulating robots have been developed.However,the fundamental mechanism of biological undulation gait generation has not yet been well explained,which hinders deepening the investigation and optimization of these robots.Towards developing a theory for explaining this biological behavior,which will further guide the design of artificial undulation systems,we propose a hypothesis based on both biological findings and previous robotics studies.To verify the hypothesis,we investigate embodied intelligence of undulation locomotion via a mechanical system.Through experimental study,we observe the phenomenon that undulation gait is a production of the source,which is the torque inputs,and the filter,which is the natural dynamics of the system.We further derive a general mathematical model and conduct morphological computation accordingly.From a simple model to a complicated system,our work explores the principles of undulation gait generation.Our findings significantly simplify the control system design of artificial undulating systems.
文摘Geode, boudinage, and undulation structures are widely distributed in the siliceous beds of the Upper Cretaceous/Tertiary rocks in Jordan. Their formation was attributed to tectonic forces, syngenetic processes, organic disintegration processes, subaquatic gliding, compaction and settlement, and meteoritic impacts. In this work, the structural features in the siliceous beds of Jordan are attributed to an interplay of load and directed pressures, and mineralogical transformation processes (opal-A to opal-CT to quartz), governed by pH changes. Tectonic directed pressure was acting in an ESE-WSW direction and is common in the silicified limestone of Upper Cretaceous.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. U1632266, 11927807, and U2032207)。
文摘APPLE-Knot undulator can effectively solve the on-axis heat load problem and is proven to perform well in VUV beamline and soft x-ray beamline in high energy storage ring. However, for soft x-ray beamline in a medium energy ring,whether the APPLE-Knot undulator excels the APPLE undulator is still a question. Here, a merged APPLE-Knot undulator is studied to generate soft x-ray in a medium energy ring. Its advantages and problems are discussed. Though the on-axis heat load of the APPLE-Knot undulator is lower in linear polarization modes compared to the APPLE undulator, its flux is lower. The APPLE-Knot undulator shows no advantage when only fundamental harmonic is needed. However, in circular polarization mode, the APPLE-Knot undulator shows the ability to cover a broader energy range which can remedy the notable shortcoming of the APPLE undulator.
文摘Brucellosis is an old, infectious and common zoonosis whose causative agents are Gramnegative bacteria from the Brucella genus. Brucellosis is transmitted through direct contactwith infected animals or using unpasteurized dairy products of goats, pigs, camels, sheep,buffalo and cows. Brucellosis is still the most common zoonosis in the world, with mostof cases occurring in developing countries. Today, an approach to traditional medicine andmedicinal plants, especially with regards to the repeated recommendations of the World HealthOrganization, is a necessity. One-third of chemical drugs are produced by using plants andthere is a high potential to produce more drugs from plants. Medicinal plants are helpful inthe management of various conditions, especially bacterial diseases. Although there is notenough scientific evidence regarding the clinical effectiveness of herbal drugs for the treatmentof brucellosis, there is strong evidence on the antimicrobial effects of herbal drugs to preventinfection. Therefore, this article seeks to describe the antibacterial effects of some plantderived essential oils or extracts, so that they can serve as promising choices to develop newanti-Brucella medications, as suitable alternatives to conventional antibiotics for brucellosis, asmuch as possible, taking into account the benefits of these herbal drugs.
文摘Engineering seismic exploration aims at shallow imaging which is confused by statics if the surface is uneven. Direct pre-stack depth migration (DPDM) is based on accurate elevations of sources and receivers, by which static correction is completely abandoned before migration and surely the imaging quality is remarkably improved. To obtain some artificial shot gathers, high-order staggered-grid finite-difference (FD) method is adapted to model acoustic wave propagation. Since the shot gathers are always disturbed by regular interferences, the statics still must be applied to supporting the interference elimination by apparent velocity filtering method. Then all the shot gathers should be removed back to their original positions by reverse statics. Finally, they are migrated by pre-stack reverse-time depth migration and imaged. The numerical experiments show that the DPDM can ideally avoid the mistakes caused by statics and increase imaging precision.
基金funded by a grant from the Deanship for Scientific Research,King Khalid University(Project#GRP-4-1439).
文摘Objective: To investigate the prevalence and risk factors of brucellosis in human and animal’s communities in southern Saudi Arabia.Methods: A cross-sectional sero-epidemiological study was conducted in Aseer and Jazan, Saudi Arabia(October 2017-October 2018). Human serum samples(n=339) were initially screened for Brucella antibodies and positive samples were further titrated for Brucella antibodies by immunocapture assay(titer of ≥1:320 as positive). Animal samples(n=828) were screened using the Rose Bengal test. Relationship status was dichotomized to measure and predict independent contributions to variations in human using univariate and multivariate stepwise binary logistic regression model. Results: The rate of brucellosis among the 339 human samples in the two regions was 33.9%, and the rate of acute brucellosis was 12.4%. The rate of brucellosis in animals was 4.7%. Human brucellosis among the target groups was higher in northwestern Aseer(53.3%) compared to Southeastern Aseer(25.9%) and Jazan region(20.6%). The disease was more prevalent among non-Saudi nationals(35.2%) compared to Saudis(30.5%). The rate of brucellosis among butchers and shepherds was 37.5% and 37.2%, respectively. The rate of brucellosis was 37.8% in people over 30 years of age. Our univariate analysis showed that residing in Aseer region(OR: 2.60, 95% CI: 1.50-4.40), especially residing in northwestern Aseer region(OR: 4.40, 95% CI: 2.40-7.90), frequent consumption of raw meat(OR: 2.90, 95% CI: 1.50-5.50), shepherds(OR: 2.10, 95% CI: 0.80-5.30), owning sheep(OR: 2.20, 95% CI: 1.10-4.40), daily contact with animals(OR: 2.10, 95% CI: 0.75-5.80), and those > 30-year-old(OR: 1.50, 95% CI: 1.00-2.40) were significantly associated with increased risks of brucellosis. Our multivariate analysis further showed that residing in northwestern Aseer(OR: 9.16, 95% CI: 3.39-24.76) and having sheep(OR: 1.16, 95% CI: 1.00-1.35) were significant and independent risks of brucellosis while residing in agricultural region(OR: 0.28, 95% CI: 0.10-0.78) was a significant and independent protector against brucellosis.Conclusions: The study concluded that residing in northwestern Aseer area and having animals(sheep) are associated with significantly increased risks of brucellosis.
基金supported by China Geological Survey Northeastern Tarim Aeromagnetic and Aerogravity comprehensive survey project(No.12120115039401)
文摘Most of the current computing methods used to determine the magnetic field of a uniformly magnetized cuboid assume that the observation point is located in the upper half space without a source. However, such methods may generate analytical singularities for conditions of undulating terrain. Based on basic geomagnetic field theories, in this study an improved magnetic field expression is derived using an integration method of variable substitution, and all singularity problems for the entire space without a source are discussed and solved. This integration process is simpler than that of previous methods, and final integral results with a more uniform form. AT at all points in the source-flee space can be calculated without requiring coordinate transformation; thus forward modeling is also simplified. Corresponding model tests indicate that the new magnetic field expression is more correct because there is no analytical singularity and can be used with undulating terrain.
基金supported by the National Basic Research Program of China(No.2013CB228602)the National Science and Technology Major Project of China(No.2011ZX05004-003)the National High Tech Research Program of China(No.2013AA064202)
文摘First-break picking is the key step in seismic data processing for surveying undulate surfaces, and directly infl uences the precision of near-surface modeling and effects of static corrections. The current first-break auto-picking methods may fail when the signalto-noise ratio(SNR) is low for seismic data in the undulate area, and require labor and time intensive manual picking. This study develops an improved super-virtual interferometry(SVI) method that combines multichannel and multidomain quality control(MMQC) techniques to achieve auto-picked first breaks. The improved SVI method extends the SVI application to enhance the SNR for near-surface scattered waves for the first time, which allows for the SVI method to adapt to first breaks with complex raypaths by linear combination of refractions and near-surface scattered waves. Methods of inverse and multidomain interferometry are developed to effectively enhance the virtual records extracted by the SVI method. The deconvolution filter for waveforms is used to increase resolution and reduce false picks, while the MMQC technique is designed to auto-correct false picks and increase the stability of auto-picking first breaks. The robust technique developed in this study enables stable processing of large 3D seismic datasets. Higher quality results are obtained using the approach presented in this paper to actual field data from the mountain areas in western China, when compared to some commonly used commercial software.
文摘The undulating fin propulsion system is an instance of the bio-inspired propulsion systems. In the current study, the swimming motion of a squid-like robot with two undulating side fins, mimicking those of a Stingray or a Cuttlefish, was investigated through flow computation around the body. We used the finite analytic method for space discretization and Euler implicit scheme for time discretization along with the PISO algorithm for velocity pressure coupling. A body-fitted moving grid was generated using the Poisson equation at each time step. Based on the computed results, we discussed the features of the flow field and hydrodynamic forces acting on the body and fin. A simple relationship among the fin's principal dimensions was established. Numerical computation was done for various aspect ratios, fin angles and frequencies in order to validate the proposed relationship among principal dimensions. Subsequently, the relationship was examined base on the distribution of pressure difference between upper and lower surfaces and the distribution of the thrust force. In efficiency calculations, the undulating fins showed promising results. Finally, for the fin, the open characteristics from computed data showed satisfactory conformity with the experimental results.
文摘Biomimetic design employs the principles of nature to solve engineering problems. Such designs which are hoped to be quick, efficient, robust, and versatile, have taken advantage of optimization via natural selection. In the present research, an environment-friendly propulsion system mimicking undulating fins of stingray was built. A non-conventional method was considered to model the flexibility of the fins of stingray. A two-degree-of-freedom mechanism comprised of several linkages was designed and constructed to mimic the actual flexible fin, The driving linkages were used to form a mechanical fin consisting of several fin segments, which are able tO produce undulations, similar to those produced by the actual fins. Owing to the modularity of the design of the mechanical fin, various undulating patterns can be realized. Some qualitative observations, obtained by experiments, predicted that the thrusts produced by the mechanical fin are different among various undulating patterns. To fully understand this experimental phenomenon is very important for better performance and energy saving for our biorobotic underwater propulsion system. Here, four basic undulating patterns of the mechanical fin were performed using two-dimensional unsteady computational fluid dynamics (CFD) method. An unstructured, grid-based, unsteady Navier-Stokes solver with automatic adaptive re-meshing was used to compute the unsteady flow around the fin through twenty complete cycles. The pressure distribution on fin surface was computed and integrated to provide fin forces which were decomposed into rift and thrust. The pressure force and friction force were also computed throughout the swimming cycle. Finally, vortex contour maps of these four basic fin undulating patterns were displayed and compared.
基金supported by the Public Science and Technology Research Funds Projects of Ocean (No.201305018)the National Key Technology Research and Development Program for the 12th Five-Year Plan (No.2012BAD33B10)+3 种基金the National Natural Science Foundation of Guangdong, China (Nos. 2014A 030310351 and 2014A030310338)the Innovative Development of Marine Economy Regional Demonstration Projects of Guangdong (Nos.SZHY2012-B01-004 and GD2013-B03-001)the Science and Technology Planning Project of Guangdong Province, China (Nos.2013B 090800002 and 2015B090904003)the National Science Foundation for Young Scientists of China (No.31101271)
文摘Unfavorable fishy odour is an inevitable problem in aquatic products. In the present study, headspace solid-phase mi- croextraction gas chromatography mass spectrometry (HS-SPME-GC-MS) analysis of volatiles from untreated samples and three deodorized samples (under the optimal conditions) ofPaphia undulata enzymatic hydrolysate revealed that the compounds contrib- uting to the distinctive odor were 1-octen-3-ol, n-hexanal, n-heptanal, 2,4-heptadienal, and 2,4-decadienal, whereas n-pentanal, n-octanal, n-octanol, benzaldehyde, 2-ethylfuran and 2-pentylfuran were the main contributors to the aromatic flavor. The deodoriz- ing effects of activated carbon (AC) adsorption, yeast extract (YE) masking and tea polyphenol (TP) treatment on a P. undulata en- zymatic hydrolysate were investigated using orthogonal experiments with sensory evaluation as the index. The following optimized deodorization conditions were obtained: AC adsorption (35 mg mL-1, 80℃, 40 rain), YE masking (7 mgmL l, 45 ℃, 30 min) and TP treatment (0.4mgmL-l, 40℃, 50min). AC adsorption effectively removed off-flavor volatile aldehydes and ketones. YE masking modified the odor profile by increasing the relative contents of aromatic compounds and decreasing the relative contents of aldehydes and ketones. The TP treatment was not effective in reducing the odor score, but it significantly reduced the relative content of alde- hydes while increasing that of alkanes. It is also notable that TP effectively suppressed trimethylamine (TMA) formation in a P. un- dulate hydrolysate solution for a period of 72 h.
文摘In this paper, a carangiform robotic fish with 4-DoF (degree of freedom) tail has been developed. The robotic fish has capability of swimming under two modes that are radio control and autonomous swimming. Experiments were conducted to investigate the influences of characteristic parameters including the frequency, the amplitude, the wave length, the phase difference and the coefficient on forward velocity. The experimental results shown that the swimming performance of the robotic fish is affected mostly by the characteristic parameters observed.
基金the Princeton University Eric and Wendy Schmidt Fund for the financial support of this project。
文摘The periodic undulation of a molten track’s height profile in laser-based powder bed fusion of metals(PBF-LB/M)is a commonly observed phenomena that can cause defects and building failure during the manufacturing process.However a quantitative analysis of such instabilities has not been fully established and so here we used Rayleigh–Plateau theory to determine the stability of a single molten track in PBF-LB/M and tested it with various processing conditions by changing laser power and beam shape.The analysis discovered that normalized enthalpy,which relates to energy input density,determines whether a molten track is initially unstable and if so,the growth rate for the instability.Additionally,whether the growth rate ultimately yields significant undulation depends on the melt duration,estimated by dwell time in our experiment.