为进一步提升高雷诺数、大迎角(Angle of attack,AoA)和高马赫数下的翼型可压缩流场预测精度和效率,本文提出了一种基于坐标转换方法和UNet神经网络的机器学习推理方法。首先,提出了用于数据前处理的坐标转换方法,将计算流体力学中的物...为进一步提升高雷诺数、大迎角(Angle of attack,AoA)和高马赫数下的翼型可压缩流场预测精度和效率,本文提出了一种基于坐标转换方法和UNet神经网络的机器学习推理方法。首先,提出了用于数据前处理的坐标转换方法,将计算流体力学中的物理量和网格信息转换成神经网络空间信息,使流场信息的分布更符合神经网络的输入要求。其次,建立了新型深度UNet神经网络,使模型学习到翼型流场精细复杂的局部流动特征。本文将两种方法结合,建立了翼型可压缩流场机器学习推理方法,得到快速高精度的推理模型。最后,对不同种类翼型的流场与气动力进行预测分析,并与传统机器学习方法预测的结果进行比较。结果表明,本文提出的机器学习推理方法能够较好地预测翼型的可压缩流场,并且能够更好地捕捉高雷诺数下的复杂流动行为以及预测大迎角、高马赫数条件下的流动分离和激波现象。展开更多
文摘为进一步提升高雷诺数、大迎角(Angle of attack,AoA)和高马赫数下的翼型可压缩流场预测精度和效率,本文提出了一种基于坐标转换方法和UNet神经网络的机器学习推理方法。首先,提出了用于数据前处理的坐标转换方法,将计算流体力学中的物理量和网格信息转换成神经网络空间信息,使流场信息的分布更符合神经网络的输入要求。其次,建立了新型深度UNet神经网络,使模型学习到翼型流场精细复杂的局部流动特征。本文将两种方法结合,建立了翼型可压缩流场机器学习推理方法,得到快速高精度的推理模型。最后,对不同种类翼型的流场与气动力进行预测分析,并与传统机器学习方法预测的结果进行比较。结果表明,本文提出的机器学习推理方法能够较好地预测翼型的可压缩流场,并且能够更好地捕捉高雷诺数下的复杂流动行为以及预测大迎角、高马赫数条件下的流动分离和激波现象。