The unfolded protein response(UPR)is a cellular stress response pathway activated when the endoplasmic reticulum,a crucial organelle for protein folding and modification,encounters an accumulation of unfolded or misfo...The unfolded protein response(UPR)is a cellular stress response pathway activated when the endoplasmic reticulum,a crucial organelle for protein folding and modification,encounters an accumulation of unfolded or misfolded proteins.The UPR aims to restore endoplasmic reticulum homeostasis by enhancing protein folding capacity,reducing protein biosynthesis,and promoting protein degradation.It also plays a pivotal role in coordinating signaling cascades to determine cell fate and function in response to endoplasmic reticulum stress.Recent research has highlighted the significance of the UPR not only in maintaining endoplasmic reticulum homeostasis but also in influencing various physiological processes in the nervous system.Here,we provide an overview of recent findings that underscore the UPR’s involvement in preserving the function and viability of neuronal and myelinating cells under physiological conditions,and highlight the critical role of the UPR in brain development,memory storage,retinal cone development,myelination,and maintenance of myelin thickness.展开更多
In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the re...In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the relationship between the experimental and simulation results were explored.Our computational findings on the secondary structure of SEB showed that at room temperature,the CD spectroscopic results were highly consistent with the MD results.Moreover,under heating conditions,the changing trends of helix,sheet and random coil obtained by CD spectral fitting were highly consistent with those obtained by MD.In order to gain a deeper understanding of the thermal stability mechanism of SEB,the MD trajectories were analyzed in terms of root mean square deviation(RMSD),secondary structure assignment(SSA),radius of gyration(R_(g)),free energy surfaces(FES),solvent-accessible surface area(SASA),hydrogen bonds and salt bridges.The results showed that at low heating temperature,domain Ⅰ without loops(omitting the mobile loop region)mainly relied on hydrophobic interaction to maintain its thermal stability,whereas the thermal stability of domain Ⅱ was mainly controlled by salt bridges and hydrogen bonds.Under high heating temperature conditions,the hydrophobic interactions in domain Ⅰ without loops were destroyed and the secondary structure was almost completely lost,while domain Ⅱ could still rely on salt bridges as molecular staples to barely maintain the stability of the secondary structure.These results help us to understand the thermodynamic and kinetic mechanisms that maintain the thermal stability of SEB at the molecular level,and provide a direction for establishing safer and more effective food sterilization processes.展开更多
Introduction:Transplantation of mesenchymal stromal cells(MSCs)is a promising therapy for type 1 diabetes(T1D).However,whether the infused MSCs affect the endoplasmic reticulum stress or subsequent unfolded protein re...Introduction:Transplantation of mesenchymal stromal cells(MSCs)is a promising therapy for type 1 diabetes(T1D).However,whether the infused MSCs affect the endoplasmic reticulum stress or subsequent unfolded protein response inβcells remains unclear.Methods:To investigate this,we induced early-onset T1D in non-obese diabetic mice using streptozotocin.Subsequently,T1D mice were randomly assigned to receive either MSCs or phosphate-buffered saline.We observed the in vivo homing of MSCs and assessed their effectiveness by analyzing blood glucose levels,body weight,histopathology,pancreatic protein expression,and serum levels of cytokines,proinsulin,and C-peptide.Results:Infused MSCs were found in the lungs,liver,spleen,and pancreas of T1D mice.They exhibited various effects,including reducing blood glucose levels,regulating immunity,inhibiting inflammation,increasingβ-cell areas,and reducing the expression of key proteins in the unfolded protein response pathway.Fasting serum proinsulin and C-peptide levels were significantly higher in the MSCs treatment group than in the T1D model group.However,there was no significant difference in the biomarker ofβ-cell endoplasmic reticulum stress,the ratio of fasting serum proinsulin to C-peptide,between the two groups.Conclusion:Ourfindings reveal that MSCs infusion does not alleviate endoplasmic reticulum stress inβcells directly but modulates the unfolded protein response pathway to preserveβ-cell mass and function in T1D mice.展开更多
In an attempt to realize a flapping wing micro-air vehicle with morphing wings, we report on improvements to our previousfoldable artificial hind wing.Multiple hinges, which were implemented to mimic the bending zone ...In an attempt to realize a flapping wing micro-air vehicle with morphing wings, we report on improvements to our previousfoldable artificial hind wing.Multiple hinges, which were implemented to mimic the bending zone of a beetle hind wing, weremade of small composite hinge plates and tiny aluminum rivets.The buck-tails of rivets were flared after the hinge plates wereassembled with the rivets so that the folding/unfolding motions could be completed in less time, and the straight shape of theartificial hind wing could be maintained after fabrication.Folding and unfolding actions were triggered by electrically-activatedShape Memory Alloy (SMA) wires.For wing folding, the actuation characteristics of the SMA wire actuator were modifiedthrough heat treatment.Through a series of flapping tests, we confirmed that the artificial wings did not fold back and arbitrarilyfluctuate during the flapping motion.展开更多
Acute pancreatitis (AP) is an inflammatory disorder of pancreatic tissue initiated in injured acinar cells. Severe AP remains a significant challenge due to the lack of effective treatment. The widely-accepted autodig...Acute pancreatitis (AP) is an inflammatory disorder of pancreatic tissue initiated in injured acinar cells. Severe AP remains a significant challenge due to the lack of effective treatment. The widely-accepted autodigestion theory of AP is now facing challenges, since inhibiting protease activation has negligible effectiveness for AP treatment despite numerous efforts. Furthermore, accumulating evidence supports a new concept that malfunction of a self-protective mechanism, the unfolded protein response(UPR), is the driving force behind the pathogenesis of AP. The UPR is induced by endoplasmic reticulum(ER) stress, a disturbance frequently found in acinar cells, to prevent the aggravation of ER stress that can otherwise lead to cell injury. In addition, the UPR's signaling pathways control NFκB activation and autophagy flux, and these dysregulations cause acinar cell inflammatory injury in AP, but with poorly understood mechanisms. We therefore summarize the protective role of the UPR in AP, propose mechanistic models of how inadequate UPR could promote NFκB's pro-inflammatory activity and impair autophagy's protective function in acinar cells, and discuss its relevance to current AP treatment. We hope that insight provided in this review will help facilitate the research and management of AP.展开更多
Determining the similarity degree between process models was very important for their management,reuse,and analysis.Current approaches either focused on process model's structural aspect,or had inefficiency or imp...Determining the similarity degree between process models was very important for their management,reuse,and analysis.Current approaches either focused on process model's structural aspect,or had inefficiency or imprecision in behavioral similarity.Aiming at these problems,a novel similarity measure which extended an existing method named Transition Adjacent Relation(TAR) with improved precision and efficiency named TAR * was proposed.The ability of measuring similarity was extended by eliminating the duplicate tasks without impacting the behaviors.For precision,TARs was classified into repeatable and unrepeatable ones to identify whether a TAR was involved in a loop.Two new kinds of TARs were added,one related to the invisible tasks after the source place and before sink place,and the other representing implicit dependencies.For efficiency,all TARs based on unfolding instead of its reach ability graph of a labeled Petri net were calculated to avoid state space explosion.Experiments on artificial and real-world process models showed the effectiveness and efficiency of the proposed method.展开更多
An accurate energy calibration of a 5"× 2" BC501A liquid scintillator-based neutron detector by means of photon sources and the unfolding of pulse height spectra are described. The photon responses were measure...An accurate energy calibration of a 5"× 2" BC501A liquid scintillator-based neutron detector by means of photon sources and the unfolding of pulse height spectra are described. The photon responses were measured with 22Na, 137Cs and 54Mn photon sources and simulated using the GRESP code, which was developed at the Physiknlisch Technische Bundesanstalt in Germany. Pulse height spectra produced by three different photon sources were employed to investigate the effects of the unfolding techniques. It was found that the four unfolding codes of the HEPRO and UMG3.3 packages, including GRAVEL, UNFANA, MIEKE and MAXED, performed well with the test spectra and produced generally consistent results. They could therefore be used to obtain neutron energy spectra in toknmak experiments.展开更多
A self-adaptive differential evolution neutron spectrum unfolding algorithm(SDENUA)is established in this study to unfold the neutron spectra obtained from a water-pumping-injection multilayered concentric sphere neut...A self-adaptive differential evolution neutron spectrum unfolding algorithm(SDENUA)is established in this study to unfold the neutron spectra obtained from a water-pumping-injection multilayered concentric sphere neutron spectrometer(WMNS).Specifically,the neutron fluence bounds are estimated to accelerate the algorithm convergence,and the minimum error between the optimal solution and input neutron counts with relative uncertainties is limited to 10^(-6)to avoid unnecessary calculations.Furthermore,the crossover probability and scaling factor are self-adaptively controlled.FLUKA Monte Carlo is used to simulate the readings of the WMNS under(1)a spectrum of Cf-252 and(2)its spectrum after being moderated,(3)a spectrum used for boron neutron capture therapy,and(4)a reactor spectrum.Subsequently,the measured neutron counts are unfolded using the SDENUA.The uncertainties of the measured neutron count and the response matrix are considered in the SDENUA,which does not require complex parameter tuning or an a priori default spectrum.The results indicate that the solutions of the SDENUA agree better with the IAEA spectra than those of MAXED and GRAVEL in UMG 3.1,and the errors of the final results calculated using the SDENUA are less than 12%.The established SDENUA can be used to unfold spectra from the WMNS.展开更多
The retina is one of the most energy demanding tissues in the body. Like most neurons in the central nervous system, retinal neurons consume high amounts of adenosine-5′-triphosphate(ATP) to generate visual signal ...The retina is one of the most energy demanding tissues in the body. Like most neurons in the central nervous system, retinal neurons consume high amounts of adenosine-5′-triphosphate(ATP) to generate visual signal and transmit the information to the brain. Disruptions in retinal metabolism can cause neuronal dysfunction and degeneration resulting in severe visual impairment and even blindness. The homeostasis of retinal metabolism is tightly controlled by multiple signaling pathways, such as the unfolded protein response(UPR), and the close interactions between retinal neurons and other retinal cell types including vascular cells and Müller glia. The UPR is a highly conserved adaptive cellular response and can be triggered by many physiological stressors and pathophysiological conditions. Activation of the UPR leads to changes in glycolytic rate, ATP production, de novo serine synthesis, and the hexosamine biosynthetic pathway, which are considered critical components of Müller glia metabolism and provide metabolic support to surrounding neurons. When these pathways are disrupted, neurodegeneration occurs rapidly. In this review, we summarize recent advance in studies of the UPR in Müller glia and highlight the potential role of the UPR in retinal degeneration through regulation of Müller glia metabolism.展开更多
The mitochondrial unfolded protein response(UPRmt)is an evolutionarily conserved adaptive mechanism for improving cell survival under mitochondrial stress.Under physiological and pathological conditions,the UPRmt is t...The mitochondrial unfolded protein response(UPRmt)is an evolutionarily conserved adaptive mechanism for improving cell survival under mitochondrial stress.Under physiological and pathological conditions,the UPRmt is the key to maintaining intracellular homeostasis and proteostasis.Important roles of the UPRmt have been demonstrated in a variety of cell types and in cell development,metabolism,and immune processes.UPRmt dysfunction leads to a variety of pathologies,including cancer,inflammation,neurodegenerative disease,metabolic disease,and immune disease.Stem cells have a special ability to selfrenew and differentiate into a variety of somatic cells and have been shown to exist in a variety of tissues.These cells are involved in development,tissue renewal,and some disease processes.Although the roles and regulatory mechanisms of the UPRmt in somatic cells have been widely reported,the roles of the UPRmt in stem cells are not fully understood.The roles and functions of the UPRmt depend on stem cell type.Therefore,this paper summarizes the potential significance of the UPRmt in embryonic stem cells,tissue stem cells,tumor stem cells,and induced pluripotent stem cells.The purpose of this review is to provide new insights into stem cell differentiation and tumor pathogenesis.展开更多
Alzheimer’s disease has proven to be largely intractable to treatment,despite years of research,and numerous trials of therapies that target the hallmarks of the disease-amyloid plaques and neurofibrillary tangles.Th...Alzheimer’s disease has proven to be largely intractable to treatment,despite years of research,and numerous trials of therapies that target the hallmarks of the disease-amyloid plaques and neurofibrillary tangles.The etiology of Alzheimer’s disease remains elusive.There is a growing body of evidence for an infectious trigger of Alzheimer’s disease,and,in particular,the focus has been on the oral pathogen Porphyromonas gingivalis(P.gingivalis).Reports of the expression of a misfolded form of p53 in non-neuronal cells(fibroblasts,peripheral blood mononuclear cells,and B cells)and serum,which appears several years before clinical symptoms manifest,may provide further support for the role of bacteria in general,and P.gingivalis in particular,in the initiation of the disease.This review presents a model of the pathway from initial oral infection with P.gingivalis to amyloid plaque formation and neuronal degeneration,via the steps of chronic periodontitis;secretion of the inflammagens lipopolysaccharide and gingipains into the bloodstream;induction of an inflammatory response in both peripheral cells and tissues;disruption of the blood-brain barrier,and entry into the central nervous system of the inflammagens and the P.gingivalis bacteria themselves.In this model,the misfolded p53(or“unfolded p53”;up53)is induced in non-neuronal cells and upregulated in serum as a result of oxidative stress due to lipopolysaccharide from P.gingivalis.up53 is therefore a potential biomarker for early diagnosis of the presence of a causative agent of Alzheimer’s disease.Fastidious dental hygiene and aggressive antibiotic treatment may prevent the patient progressing to clinical Alzheimer’s disease if serum up53 is detected at this pre-symptomatic stage.展开更多
Src SH3 protein domain is a typical two-state protein which has been confirmed by research of denaturant-induced unfolding dynamics.Force spectroscopy experiments by optical tweezers and atomic force microscopy have m...Src SH3 protein domain is a typical two-state protein which has been confirmed by research of denaturant-induced unfolding dynamics.Force spectroscopy experiments by optical tweezers and atomic force microscopy have measured the force-dependent unfolding rates with different kinds of pulling geometry.However,the equilibrium folding and unfolding dynamics at constant forces has not been reported.Here,using stable magnetic tweezers,we performed equilibrium folding and unfolding dynamic measurement and force-jump measurement of src SH3 domain with tethering points at its N-and C-termini.From the obtained force-dependent transition rates,a detailed two-state free energy landscape of src SH3 protein is constructed with quantitative information of folding free energy,transition state barrier height and position,which exemplifies the capability of magnetic tweezers to study protein folding and unfolding dynamics.展开更多
The signal transduction network in regulating lipid metabolism is a hot topic of biomedical research. Recent research endeavors reveal that intracellular stress signaling from a cellular organelle called endoplasmic r...The signal transduction network in regulating lipid metabolism is a hot topic of biomedical research. Recent research endeavors reveal that intracellular stress signaling from a cellular organelle called endoplasmic reticulum (ER) is critically involved in lipid homeostasis and the development of metabolic disease. The ER is a site where newly-synthesized proteins are folded and assembled into their three-dimensional structures, modified and transported to their precise cellular destinations. A wide range of biochemical, physiological and pathological stimuli can interrupt the protein folding process in the ER and cause accumulation of unfolded or misfolded proteins in the ER lumen, a condition referred to as ER stress. To cope with this stress condition, the ER has evolved highly-specifi c signaling pathways collectively termed Unfolded Protein Response (UPR) or ER stress response. The UPR regulates transcriptionaland translational programs, affecting broad aspects of cellular metabolism and cell fate. Lipogenesis, the metabolic process of de novo lipid biosynthesis, occurs primarily in the liver where metabolic signals regulate expression of key enzymes in glycolytic and lipogenic pathways. Recent studies suggest that the UPR plays crucial roles in modulating lipogenesis under metabolic conditions. Here we address some of recent representative evidence regarding the role of the UPR in lipogenesis.展开更多
For the unfolding of equivariant bifurcation problems with two types of state variables in the presence of parameter symmetry,the versal unfolding theorem with respect to left-right equivalence is obtained by using th...For the unfolding of equivariant bifurcation problems with two types of state variables in the presence of parameter symmetry,the versal unfolding theorem with respect to left-right equivalence is obtained by using the related methods and techniques in the singularity theory of smooth map-germs.The corresponding results in[4,9]can be considered as its special cases.A relationship between the versal unfolding w.r.t.left-right equivalence and the versal deformation w.r.t.contact equivalence is established.展开更多
In this paper,the (?)-equivariant (s, t)-equivalence relation and (?)-equivariant infinitesimally (r, s)-stability of (?)-equivariant bifurcation problem are defined. The criterion for (?)-equivariant infinitesimally ...In this paper,the (?)-equivariant (s, t)-equivalence relation and (?)-equivariant infinitesimally (r, s)-stability of (?)-equivariant bifurcation problem are defined. The criterion for (?)-equivariant infinitesimally (r, s)-stability is proven when (?) is a compact finite Lie group .Transversality condition is used to characterize the stability.展开更多
We introduced stability of arbitrary degree number for unfordings of bifurcation problems and established the equivalence of three stabilities. Thom's transversality theory is used to character the new stability.
Based on the left_right equivalent relation of smooth map_germs in singularity theory, the unfoldings of multiparameter equivariant bifurcation problems with respect to left_right equivalence are discussed. The state ...Based on the left_right equivalent relation of smooth map_germs in singularity theory, the unfoldings of multiparameter equivariant bifurcation problems with respect to left_right equivalence are discussed. The state variables of such an equivariant bifurcation problem were divided into two groups, in which the first can vary independently, while the others depend on the first in the varying process. By applying related methods and techniques in the unfolding theory of smooth map_germs, the necessary and sufficient condition for an unfolding of a multiparameter equivariant bifurcation problem with two groups of state variables to be versal is obtained.展开更多
Ultra-large plate forgings are foundation of heavy machinery,but many parts of the type cannot be made by conventional technologies due to the characters of extreme manufacturing in terms of size and quality requireme...Ultra-large plate forgings are foundation of heavy machinery,but many parts of the type cannot be made by conventional technologies due to the characters of extreme manufacturing in terms of size and quality requirements.This paper introduced a systematically method called cylinder unfolding method(CUM)for producing large plate forgings,by using a serial of operations including“splitting”,“unfolding”,and“flattening”of a thick cylinder obtained from saddle forging.The technological route of CUM was presented in detail with an example of plate forging with the horizontal sizes of 6100 mm and thickness of 300 mm.The deformation features of saddle forging for fabricating transitional cylinders were analyzed,and then the subsequent handling steps including splitting,unfolding and flattening of the cylinder,as well as the auxiliary processing,were addressed.The practice proved that CUM can provide an efficient way for manufacturing ultra-large plate forgings and meet the strict requirements in geometry and mechanical performance,without highly increasing the investments of forming equipment and tooling.展开更多
基金supported by grants from the National Institutes of Health,No.NS105689(to WL)the Department of Defense through the Multiple Sclerosis Research Program,No.W81XWH-22-1-0757(to WL).
文摘The unfolded protein response(UPR)is a cellular stress response pathway activated when the endoplasmic reticulum,a crucial organelle for protein folding and modification,encounters an accumulation of unfolded or misfolded proteins.The UPR aims to restore endoplasmic reticulum homeostasis by enhancing protein folding capacity,reducing protein biosynthesis,and promoting protein degradation.It also plays a pivotal role in coordinating signaling cascades to determine cell fate and function in response to endoplasmic reticulum stress.Recent research has highlighted the significance of the UPR not only in maintaining endoplasmic reticulum homeostasis but also in influencing various physiological processes in the nervous system.Here,we provide an overview of recent findings that underscore the UPR’s involvement in preserving the function and viability of neuronal and myelinating cells under physiological conditions,and highlight the critical role of the UPR in brain development,memory storage,retinal cone development,myelination,and maintenance of myelin thickness.
文摘In this study,circular dichroism(CD)and molecular dynamics(MD)simulation were used to investigate the thermal unfolding pathway of staphylococcal enterotoxin B(SEB)at temperatures of 298–371 and 298–500 K,and the relationship between the experimental and simulation results were explored.Our computational findings on the secondary structure of SEB showed that at room temperature,the CD spectroscopic results were highly consistent with the MD results.Moreover,under heating conditions,the changing trends of helix,sheet and random coil obtained by CD spectral fitting were highly consistent with those obtained by MD.In order to gain a deeper understanding of the thermal stability mechanism of SEB,the MD trajectories were analyzed in terms of root mean square deviation(RMSD),secondary structure assignment(SSA),radius of gyration(R_(g)),free energy surfaces(FES),solvent-accessible surface area(SASA),hydrogen bonds and salt bridges.The results showed that at low heating temperature,domain Ⅰ without loops(omitting the mobile loop region)mainly relied on hydrophobic interaction to maintain its thermal stability,whereas the thermal stability of domain Ⅱ was mainly controlled by salt bridges and hydrogen bonds.Under high heating temperature conditions,the hydrophobic interactions in domain Ⅰ without loops were destroyed and the secondary structure was almost completely lost,while domain Ⅱ could still rely on salt bridges as molecular staples to barely maintain the stability of the secondary structure.These results help us to understand the thermodynamic and kinetic mechanisms that maintain the thermal stability of SEB at the molecular level,and provide a direction for establishing safer and more effective food sterilization processes.
文摘Introduction:Transplantation of mesenchymal stromal cells(MSCs)is a promising therapy for type 1 diabetes(T1D).However,whether the infused MSCs affect the endoplasmic reticulum stress or subsequent unfolded protein response inβcells remains unclear.Methods:To investigate this,we induced early-onset T1D in non-obese diabetic mice using streptozotocin.Subsequently,T1D mice were randomly assigned to receive either MSCs or phosphate-buffered saline.We observed the in vivo homing of MSCs and assessed their effectiveness by analyzing blood glucose levels,body weight,histopathology,pancreatic protein expression,and serum levels of cytokines,proinsulin,and C-peptide.Results:Infused MSCs were found in the lungs,liver,spleen,and pancreas of T1D mice.They exhibited various effects,including reducing blood glucose levels,regulating immunity,inhibiting inflammation,increasingβ-cell areas,and reducing the expression of key proteins in the unfolded protein response pathway.Fasting serum proinsulin and C-peptide levels were significantly higher in the MSCs treatment group than in the T1D model group.However,there was no significant difference in the biomarker ofβ-cell endoplasmic reticulum stress,the ratio of fasting serum proinsulin to C-peptide,between the two groups.Conclusion:Ourfindings reveal that MSCs infusion does not alleviate endoplasmic reticulum stress inβcells directly but modulates the unfolded protein response pathway to preserveβ-cell mass and function in T1D mice.
基金supported by the Korea Science and Engineering Foundation Grant(National Research Laboratory Program,R0A-2007-000-200012-0)the Korea Research Foundation(KRF-006-005-J03301)partially supported by the 2009 KU Brain Pool of Konkuk University
文摘In an attempt to realize a flapping wing micro-air vehicle with morphing wings, we report on improvements to our previousfoldable artificial hind wing.Multiple hinges, which were implemented to mimic the bending zone of a beetle hind wing, weremade of small composite hinge plates and tiny aluminum rivets.The buck-tails of rivets were flared after the hinge plates wereassembled with the rivets so that the folding/unfolding motions could be completed in less time, and the straight shape of theartificial hind wing could be maintained after fabrication.Folding and unfolding actions were triggered by electrically-activatedShape Memory Alloy (SMA) wires.For wing folding, the actuation characteristics of the SMA wire actuator were modifiedthrough heat treatment.Through a series of flapping tests, we confirmed that the artificial wings did not fold back and arbitrarilyfluctuate during the flapping motion.
文摘Acute pancreatitis (AP) is an inflammatory disorder of pancreatic tissue initiated in injured acinar cells. Severe AP remains a significant challenge due to the lack of effective treatment. The widely-accepted autodigestion theory of AP is now facing challenges, since inhibiting protease activation has negligible effectiveness for AP treatment despite numerous efforts. Furthermore, accumulating evidence supports a new concept that malfunction of a self-protective mechanism, the unfolded protein response(UPR), is the driving force behind the pathogenesis of AP. The UPR is induced by endoplasmic reticulum(ER) stress, a disturbance frequently found in acinar cells, to prevent the aggravation of ER stress that can otherwise lead to cell injury. In addition, the UPR's signaling pathways control NFκB activation and autophagy flux, and these dysregulations cause acinar cell inflammatory injury in AP, but with poorly understood mechanisms. We therefore summarize the protective role of the UPR in AP, propose mechanistic models of how inadequate UPR could promote NFκB's pro-inflammatory activity and impair autophagy's protective function in acinar cells, and discuss its relevance to current AP treatment. We hope that insight provided in this review will help facilitate the research and management of AP.
基金Project supported by the National Science Foundation,China(No.61003099)the National Basic Research Program,China(No.2009CB320700)
文摘Determining the similarity degree between process models was very important for their management,reuse,and analysis.Current approaches either focused on process model's structural aspect,or had inefficiency or imprecision in behavioral similarity.Aiming at these problems,a novel similarity measure which extended an existing method named Transition Adjacent Relation(TAR) with improved precision and efficiency named TAR * was proposed.The ability of measuring similarity was extended by eliminating the duplicate tasks without impacting the behaviors.For precision,TARs was classified into repeatable and unrepeatable ones to identify whether a TAR was involved in a loop.Two new kinds of TARs were added,one related to the invisible tasks after the source place and before sink place,and the other representing implicit dependencies.For efficiency,all TARs based on unfolding instead of its reach ability graph of a labeled Petri net were calculated to avoid state space explosion.Experiments on artificial and real-world process models showed the effectiveness and efficiency of the proposed method.
基金supported by the State Key Development Program for Basic Research of China (Nos. 2008CB717803, 2009GB107001,2007CB209903)the Research Fund for the Doctoral Program of Higher Education of China (No. 200610011023)National Natural Science Foundation of China (No. 10875002)
文摘An accurate energy calibration of a 5"× 2" BC501A liquid scintillator-based neutron detector by means of photon sources and the unfolding of pulse height spectra are described. The photon responses were measured with 22Na, 137Cs and 54Mn photon sources and simulated using the GRESP code, which was developed at the Physiknlisch Technische Bundesanstalt in Germany. Pulse height spectra produced by three different photon sources were employed to investigate the effects of the unfolding techniques. It was found that the four unfolding codes of the HEPRO and UMG3.3 packages, including GRAVEL, UNFANA, MIEKE and MAXED, performed well with the test spectra and produced generally consistent results. They could therefore be used to obtain neutron energy spectra in toknmak experiments.
基金supported by the National Key R&D Program of the MOST of China(No.2016YFA0300204)the National Natural Science Foundation of China(Nos.11227902)as part of the Si PáME2beamline project+1 种基金supported by the National Natural Science Foundation of China(No.41774120)the Sichuan Science and Technology Program(No.2021YJ0329)。
文摘A self-adaptive differential evolution neutron spectrum unfolding algorithm(SDENUA)is established in this study to unfold the neutron spectra obtained from a water-pumping-injection multilayered concentric sphere neutron spectrometer(WMNS).Specifically,the neutron fluence bounds are estimated to accelerate the algorithm convergence,and the minimum error between the optimal solution and input neutron counts with relative uncertainties is limited to 10^(-6)to avoid unnecessary calculations.Furthermore,the crossover probability and scaling factor are self-adaptively controlled.FLUKA Monte Carlo is used to simulate the readings of the WMNS under(1)a spectrum of Cf-252 and(2)its spectrum after being moderated,(3)a spectrum used for boron neutron capture therapy,and(4)a reactor spectrum.Subsequently,the measured neutron counts are unfolded using the SDENUA.The uncertainties of the measured neutron count and the response matrix are considered in the SDENUA,which does not require complex parameter tuning or an a priori default spectrum.The results indicate that the solutions of the SDENUA agree better with the IAEA spectra than those of MAXED and GRAVEL in UMG 3.1,and the errors of the final results calculated using the SDENUA are less than 12%.The established SDENUA can be used to unfold spectra from the WMNS.
基金supported,in part,by NIH/NEI grants EY019949 and EY025061an Unrestricted Grant to the Department of Ophthalmology,SUNY-Buffalo,from Research to Prevent Blindness
文摘The retina is one of the most energy demanding tissues in the body. Like most neurons in the central nervous system, retinal neurons consume high amounts of adenosine-5′-triphosphate(ATP) to generate visual signal and transmit the information to the brain. Disruptions in retinal metabolism can cause neuronal dysfunction and degeneration resulting in severe visual impairment and even blindness. The homeostasis of retinal metabolism is tightly controlled by multiple signaling pathways, such as the unfolded protein response(UPR), and the close interactions between retinal neurons and other retinal cell types including vascular cells and Müller glia. The UPR is a highly conserved adaptive cellular response and can be triggered by many physiological stressors and pathophysiological conditions. Activation of the UPR leads to changes in glycolytic rate, ATP production, de novo serine synthesis, and the hexosamine biosynthetic pathway, which are considered critical components of Müller glia metabolism and provide metabolic support to surrounding neurons. When these pathways are disrupted, neurodegeneration occurs rapidly. In this review, we summarize recent advance in studies of the UPR in Müller glia and highlight the potential role of the UPR in retinal degeneration through regulation of Müller glia metabolism.
基金Supported by the Key Projects of Natural Science Foundation of Ningxia,No.2020AAC02020the Funds of Ningxia Medical University,No.XY201808.
文摘The mitochondrial unfolded protein response(UPRmt)is an evolutionarily conserved adaptive mechanism for improving cell survival under mitochondrial stress.Under physiological and pathological conditions,the UPRmt is the key to maintaining intracellular homeostasis and proteostasis.Important roles of the UPRmt have been demonstrated in a variety of cell types and in cell development,metabolism,and immune processes.UPRmt dysfunction leads to a variety of pathologies,including cancer,inflammation,neurodegenerative disease,metabolic disease,and immune disease.Stem cells have a special ability to selfrenew and differentiate into a variety of somatic cells and have been shown to exist in a variety of tissues.These cells are involved in development,tissue renewal,and some disease processes.Although the roles and regulatory mechanisms of the UPRmt in somatic cells have been widely reported,the roles of the UPRmt in stem cells are not fully understood.The roles and functions of the UPRmt depend on stem cell type.Therefore,this paper summarizes the potential significance of the UPRmt in embryonic stem cells,tissue stem cells,tumor stem cells,and induced pluripotent stem cells.The purpose of this review is to provide new insights into stem cell differentiation and tumor pathogenesis.
文摘Alzheimer’s disease has proven to be largely intractable to treatment,despite years of research,and numerous trials of therapies that target the hallmarks of the disease-amyloid plaques and neurofibrillary tangles.The etiology of Alzheimer’s disease remains elusive.There is a growing body of evidence for an infectious trigger of Alzheimer’s disease,and,in particular,the focus has been on the oral pathogen Porphyromonas gingivalis(P.gingivalis).Reports of the expression of a misfolded form of p53 in non-neuronal cells(fibroblasts,peripheral blood mononuclear cells,and B cells)and serum,which appears several years before clinical symptoms manifest,may provide further support for the role of bacteria in general,and P.gingivalis in particular,in the initiation of the disease.This review presents a model of the pathway from initial oral infection with P.gingivalis to amyloid plaque formation and neuronal degeneration,via the steps of chronic periodontitis;secretion of the inflammagens lipopolysaccharide and gingipains into the bloodstream;induction of an inflammatory response in both peripheral cells and tissues;disruption of the blood-brain barrier,and entry into the central nervous system of the inflammagens and the P.gingivalis bacteria themselves.In this model,the misfolded p53(or“unfolded p53”;up53)is induced in non-neuronal cells and upregulated in serum as a result of oxidative stress due to lipopolysaccharide from P.gingivalis.up53 is therefore a potential biomarker for early diagnosis of the presence of a causative agent of Alzheimer’s disease.Fastidious dental hygiene and aggressive antibiotic treatment may prevent the patient progressing to clinical Alzheimer’s disease if serum up53 is detected at this pre-symptomatic stage.
基金the National Natural Science Foundation of China(Grant Nos.11874309 and 11474237)the 111 Project(Grant No.B16029)。
文摘Src SH3 protein domain is a typical two-state protein which has been confirmed by research of denaturant-induced unfolding dynamics.Force spectroscopy experiments by optical tweezers and atomic force microscopy have measured the force-dependent unfolding rates with different kinds of pulling geometry.However,the equilibrium folding and unfolding dynamics at constant forces has not been reported.Here,using stable magnetic tweezers,we performed equilibrium folding and unfolding dynamic measurement and force-jump measurement of src SH3 domain with tethering points at its N-and C-termini.From the obtained force-dependent transition rates,a detailed two-state free energy landscape of src SH3 protein is constructed with quantitative information of folding free energy,transition state barrier height and position,which exemplifies the capability of magnetic tweezers to study protein folding and unfolding dynamics.
基金Supported partially by the American Heart Association (AHA) Scientist Development Award (0635423Z)the AHA Grant-in-Aid (09GRNT2280479)+1 种基金the Department of Defense Breast Cancer Research Program (BC095179P1)the Karmanos Cancer Institute Pilot Grant
文摘The signal transduction network in regulating lipid metabolism is a hot topic of biomedical research. Recent research endeavors reveal that intracellular stress signaling from a cellular organelle called endoplasmic reticulum (ER) is critically involved in lipid homeostasis and the development of metabolic disease. The ER is a site where newly-synthesized proteins are folded and assembled into their three-dimensional structures, modified and transported to their precise cellular destinations. A wide range of biochemical, physiological and pathological stimuli can interrupt the protein folding process in the ER and cause accumulation of unfolded or misfolded proteins in the ER lumen, a condition referred to as ER stress. To cope with this stress condition, the ER has evolved highly-specifi c signaling pathways collectively termed Unfolded Protein Response (UPR) or ER stress response. The UPR regulates transcriptionaland translational programs, affecting broad aspects of cellular metabolism and cell fate. Lipogenesis, the metabolic process of de novo lipid biosynthesis, occurs primarily in the liver where metabolic signals regulate expression of key enzymes in glycolytic and lipogenic pathways. Recent studies suggest that the UPR plays crucial roles in modulating lipogenesis under metabolic conditions. Here we address some of recent representative evidence regarding the role of the UPR in lipogenesis.
文摘For the unfolding of equivariant bifurcation problems with two types of state variables in the presence of parameter symmetry,the versal unfolding theorem with respect to left-right equivalence is obtained by using the related methods and techniques in the singularity theory of smooth map-germs.The corresponding results in[4,9]can be considered as its special cases.A relationship between the versal unfolding w.r.t.left-right equivalence and the versal deformation w.r.t.contact equivalence is established.
基金Supported by the National Nature Science Foundation of China (10261002)
文摘In this paper,the (?)-equivariant (s, t)-equivalence relation and (?)-equivariant infinitesimally (r, s)-stability of (?)-equivariant bifurcation problem are defined. The criterion for (?)-equivariant infinitesimally (r, s)-stability is proven when (?) is a compact finite Lie group .Transversality condition is used to characterize the stability.
基金Supported by the National Natural Science Foundation of China(198710 74)
文摘We introduced stability of arbitrary degree number for unfordings of bifurcation problems and established the equivalence of three stabilities. Thom's transversality theory is used to character the new stability.
文摘Based on the left_right equivalent relation of smooth map_germs in singularity theory, the unfoldings of multiparameter equivariant bifurcation problems with respect to left_right equivalence are discussed. The state variables of such an equivariant bifurcation problem were divided into two groups, in which the first can vary independently, while the others depend on the first in the varying process. By applying related methods and techniques in the unfolding theory of smooth map_germs, the necessary and sufficient condition for an unfolding of a multiparameter equivariant bifurcation problem with two groups of state variables to be versal is obtained.
基金Project(cstc2018jcyjAX0159)supported by the Natural Science Foundation of Chongqing,ChinaProject(51575066)supported by the National Natural Science Foundation of China。
文摘Ultra-large plate forgings are foundation of heavy machinery,but many parts of the type cannot be made by conventional technologies due to the characters of extreme manufacturing in terms of size and quality requirements.This paper introduced a systematically method called cylinder unfolding method(CUM)for producing large plate forgings,by using a serial of operations including“splitting”,“unfolding”,and“flattening”of a thick cylinder obtained from saddle forging.The technological route of CUM was presented in detail with an example of plate forging with the horizontal sizes of 6100 mm and thickness of 300 mm.The deformation features of saddle forging for fabricating transitional cylinders were analyzed,and then the subsequent handling steps including splitting,unfolding and flattening of the cylinder,as well as the auxiliary processing,were addressed.The practice proved that CUM can provide an efficient way for manufacturing ultra-large plate forgings and meet the strict requirements in geometry and mechanical performance,without highly increasing the investments of forming equipment and tooling.