期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Hydrological Modeling: A Better Alternative to Empirical Methods for Monthly Flow Estimation in Ungauged Basins
1
作者 Suresh Marahatta Laxmi Devkota Deepak Aryal 《Journal of Water Resource and Protection》 2021年第3期254-270,共17页
Water resource is required for agricultural, industrial, and domestic activities and for environmental preservation. However, with the increase in population and growth of urbanization, industrialization, and commerci... Water resource is required for agricultural, industrial, and domestic activities and for environmental preservation. However, with the increase in population and growth of urbanization, industrialization, and commercial activities, planning and management of water resources have become a challenging task to meet various water demands globally. Information and data on streamflow hydrology are, thus, crucial for this purpose. However, availability of measured flow data in many cases is either inadequate or not available at all. When there is no gauging station available at the site of interest, various empirical methods are generally used to estimate the flow there and the best estimation is chosen. This study is focused on the estimation of monthly average flows by such methods popular in Nepal and assessment of how they compare with the results of hydrological simulation. Performance evaluation of those methods was made with a newly introduced index, Global Performance Index (GPI) utilizing six commonly used goodness-of-fit parameters viz. coefficient of determination, mean absolute error, root mean square error, percentage of volume bias, Nash Sutcliff Efficiency and Kling-Gupta Efficiency. This study showed that hydrological modeling is the best among the considered methods of flow estimation for ungauged catchments. 展开更多
关键词 ungauged basins Modeling Monthly Flows Global Performance Index
下载PDF
Application of Muskingum routing method with variable parameters in ungauged basin 被引量:7
2
作者 Xiao-meng SONG Fan-zhe KONG Zhao-xia ZHU 《Water Science and Engineering》 EI CAS 2011年第1期1-12,共12页
This paper describes a flood routing method applied in an ungauged basin, utilizing the Muskingum model with variable parameters of wave travel time K and weight coefficient of discharge x based on the physical charac... This paper describes a flood routing method applied in an ungauged basin, utilizing the Muskingum model with variable parameters of wave travel time K and weight coefficient of discharge x based on the physical characteristics of the river reach and flood, including the reach slope, length, width, and flood discharge. Three formulas for estimating parameters of wide rectangular, triangular, and parabolic cross sections are proposed. The influence of the flood on channel flow routing parameters is taken into account. The HEC-HMS hydrological model and the geospatial hydrologic analysis module HEC-GeoHMS were used to extract channel or watershed characteristics and to divide sub-basins. In addition, the initial and constant-rate method, user synthetic unit hydrograph method, and exponential recession method were used to estimate runoff volumes, the direct runoff hydrograph, and the baseflow hydrograph, respectively. The Muskingum model with variable parameters was then applied in the Louzigou Basin in Henan Province of China, and of the results, the percentages of flood events with a relative error of peak discharge less than 20% and runoff volume less than 10% are both 100%. They also show that the percentages of flood events with coefficients of determination greater than 0.8 are 83.33%, 91.67%, and 87.5%, respectively, for rectangular, triangular, and parabolic cross sections in 24 flood events. Therefore, this method is applicable to ungauged basins. 展开更多
关键词 Muskingum model flood routing." variable parameters ungauged basin HEC-HMS
下载PDF
Hydrological modelling in the anthroposphere: predicting local runoff in a heavily modified high-alpine catchment
3
作者 Johannes WESEMANN Mathew HERRNEGGER Karsten SCHULZ 《Journal of Mountain Science》 SCIE CSCD 2018年第5期921-938,共18页
Hydrological models within inflow forecasting systems for high-alpine hydropower reservoirs can provide valuable information as part of a decision support system for the improvement of hydropower production or flood r... Hydrological models within inflow forecasting systems for high-alpine hydropower reservoirs can provide valuable information as part of a decision support system for the improvement of hydropower production or flood retention. The information, especially concerning runoff, is however rarely available for the calibration of the hydrological models used. Therefore, a method is presented to derive local runoff from secondary information for the calibration of the model parameters of the rainfallrunoff model COSERO. Changes in water levels in reservoirs, reservoir outflows, discharge measurements at water intakes and in transport lines are thereby used to derive the local, "natural" flow for a given sub-catchment. The proposed method is applied within a research study for the ?BB Infrastructure Railsystem division in the Stubache catchment in the central Austrian Alps. Here, the ?BB operates the hydropower scheme "Kraftwerksgruppe Stubachtal", which consists of 7 reservoirs and 4 hydropower stations. The hydrological model has been set up considering this human influences and the high natural heterogeneity in topography and land cover, including glaciers. Overall, the hydrological model performs mostly well for the catchment with highest NSE values of 0.78 for the calibration and0.79 for the validation period, also considering the use of homogeneous parameter fields and the uncertainty of the derived local discharge values. The derived runoff data proved to be useful information for the model calibration. Further analysis, examining the water balance and its components as well as snow cover, showed satisfactory simulation results. In conclusion, a unique runoff dataset for a small scale high-alpine catchment has been created to establish a hydrological flow prediction model which in a further step can be used for improved and sustainable hydropower management. 展开更多
关键词 High alpine catchments Rainfall-runoff modelling HYDROPOWER ungauged basins
下载PDF
Evaluating soil erosion by water in a small alpine catchment in Northern Italy: comparison of empirical models
4
作者 Francesca Berteni Stefano Barontini Giovanna Grossi 《Acta Geochimica》 EI CAS CSCD 2021年第4期507-524,共18页
To quantify water erosion rates and annual soil loss in mountainous areas,two different empirical models were used to estimate the effects of soil erosion in a small mountain basin,the Guerna Creek watershed,located i... To quantify water erosion rates and annual soil loss in mountainous areas,two different empirical models were used to estimate the effects of soil erosion in a small mountain basin,the Guerna Creek watershed,located in the Central Southern Alps(Northern Italy).These two models,Revised Universal Soil Loss Equation(RUSLE) and Erosion Potential Model(EPM),were implemented in a Geographical Information System,accounting for the geographical,geomorphological,and weather-climate parameters,which are fundamental to evaluating the intensity and variability of the erosive processes.Soil characterization was supported by laboratory analysis.The results(computed soil loss of 87 t/ha/year and 11.1 m^(3)/ha/year,using RUSLE equation and EPM method,respectively,and sediment yield of 7.5 m^(3)/ha/year using EPM method) were compared to other studies reported in the literature for different case studies with similar topographic and climatic features,as well as to those provided by the European Soil Data Centre(ESDAC).In both cases,the agreement was satisfactory,showing consistency of the adopted procedures to the parametrization of the physical processes. 展开更多
关键词 Water erosion Alpine hydrology EPM RUSLE Soil loss ungauged basin
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部