Differential spatial modulation(DSM)is a multiple-input multiple-output(MIMO)transmission scheme.It has attracted extensive research interest due to its ability to transmit additional data without increasing any radio...Differential spatial modulation(DSM)is a multiple-input multiple-output(MIMO)transmission scheme.It has attracted extensive research interest due to its ability to transmit additional data without increasing any radio frequency chain.In this paper,DSM is investigated using two mapping algorithms:Look-Up Table Order(LUTO)and Permutation Method(PM).Then,the bit error rate(BER)performance and complexity of the two mapping algorithms in various antennas and modulation methods are verified by simulation experiments.The results show that PM has a lower BER than the LUTO mapping algorithm,and the latter has lower complexity than the former.展开更多
In order to further analyze the micro-motion modulation signals generated by rotating components and extract micro-motion features,a modulation signal denoising algorithm based on improved variational mode decompositi...In order to further analyze the micro-motion modulation signals generated by rotating components and extract micro-motion features,a modulation signal denoising algorithm based on improved variational mode decomposition(VMD)is proposed.To improve the time-frequency performance,this method decomposes the data into narrowband signals and analyzes the internal energy and frequency variations within the signal.Genetic algorithms are used to adaptively optimize the mode number and bandwidth control parameters in the process of VMD.This approach aims to obtain the optimal parameter combination and perform mode decomposition on the micro-motion modulation signal.The optimal mode number and quadratic penalty factor for VMD are determined.Based on the optimal values of the mode number and quadratic penalty factor,the original signal is decomposed using VMD,resulting in optimal mode number intrinsic mode function(IMF)components.The effective modes are then reconstructed with the denoised modes,achieving signal denoising.Through experimental data verification,the proposed algorithm demonstrates effective denoising of modulation signals.In simulation data validation,the algorithm achieves the highest signal-to-noise ratio(SNR)and exhibits the best performance.展开更多
For the existing support vector machine, when recognizing more questions, the shortcomings of high computational complexity and low recognition rate under the low SNR are emerged. The characteristic parameter of the s...For the existing support vector machine, when recognizing more questions, the shortcomings of high computational complexity and low recognition rate under the low SNR are emerged. The characteristic parameter of the signal is extracted and optimized by using a clustering algorithm, support vector machine is trained by grading algorithm so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram in this paper. Simulation results show that the average recognition rate based on this algorithm is enhanced over 30% compared with methods that adopting clustering algorithm or support vector machine respectively under the low SNR. The average recognition rate can reach 90% when the SNR is 5 dB, and the method is easy to be achieved so that it has broad application prospect in the modulating recognition.展开更多
To improve the recognition rate of signal modulation recognition methods based on the clustering algorithm under the low SNR, a modulation recognition method is proposed. The characteristic parameter of the signal is ...To improve the recognition rate of signal modulation recognition methods based on the clustering algorithm under the low SNR, a modulation recognition method is proposed. The characteristic parameter of the signal is extracted by using a clustering algorithm, the neural network is trained by using the algorithm of variable gradient correction (Polak-Ribiere) so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram. Simulation results show that the recognition rate based on this algorithm is enhanced over 30% compared with the methods that adopt clustering algorithm or neural network based on the back propagation algorithm alone under the low SNR. The recognition rate can reach 90% when the SNR is 4 dB, and the method is easy to be achieved so that it has a broad application prospect in the modulating recognition.展开更多
A hybrid carrier(HC) scheme based on weighted-type fractional Fourier transform(WFRFT) has been proposed recently.While most of the works focus on HC scheme's inherent characteristics, little attention is paid to...A hybrid carrier(HC) scheme based on weighted-type fractional Fourier transform(WFRFT) has been proposed recently.While most of the works focus on HC scheme's inherent characteristics, little attention is paid to the WFRFT modulation recognition.In this paper, a new theory is provided to recognize the WFRFT modulation based on higher order cumulants(HOC). First, it is deduced that the optimal WFRFT received order can be obtained through the minimization of 4 th-order cumulants, C_(42). Then, a combinatorial searching algorithm is designed to minimize C_(42).Finally, simulation results show that the designed scheme has a high recognition rate and the combinatorial searching algorithm is effective and reliable.展开更多
Directional modulation is one of the hot topics in data security researches.To fulfill the requirements of communication security in wireless environment with multiple paths,this study takes into account the factors o...Directional modulation is one of the hot topics in data security researches.To fulfill the requirements of communication security in wireless environment with multiple paths,this study takes into account the factors of reflections and antenna radiation pattern for directional modulation.Unlike other previous works,a novel multiple-reflection model,which is more realistic and complex than simplified two-ray reflection models,is proposed based on two reflectors.Another focus is a quantum genetic algorithm applied to optimize antenna excitation in a phased directional modulation antenna array.The quantum approach has strengths in convergence speed and the globe searching ability for the complicated model with the large-size antenna array and multiple paths.From this,a phased directional modulation transmission system can be optimized as regards communication safety and improve performance based on the constraint of the pattern of the antenna array.Our work can spur applications of the quantum evolutionary algorithm in directional modulation technology,which is also studied.展开更多
The performance loss of an approximately 3 dB signal-to-noise ratio is always paid with conventional differential detection compared to the related coherent detection. A new detection scheme consisting of two steps is...The performance loss of an approximately 3 dB signal-to-noise ratio is always paid with conventional differential detection compared to the related coherent detection. A new detection scheme consisting of two steps is proposed for the differential unitary space-time modulation (DUSTM) system. In the first step, the data sequence is estimated by conventional unitary space-time demodulation (DUSTD) and differentially encoded again to produce an initial estimate of the transmitted symbol stream. In the second step, the initial estimate of the symbol stream is utilized to initialize an expectation maximization (EM)-based iterative detector. In each iteration, the most recent detected symbol stream is employed to estimate the channel, which is then used to implement coherent sequence detection to refine the symbol stream. Simulation results show that the proposed detection scheme performs much better than the conventional DUSTD after several iterations.展开更多
With appropriate geometry configuration, helicopter- borne rotating synthetic aperture radar (ROSAR) can break through the limitations of monostatic synthetic aperture radar (SAR) on forward-looking imaging. With ...With appropriate geometry configuration, helicopter- borne rotating synthetic aperture radar (ROSAR) can break through the limitations of monostatic synthetic aperture radar (SAR) on forward-looking imaging. With this capability, ROSAR has extensive potential applications, such as self-navigation and self-landing. Moreover, it has many advantages if combined with the frequency modulated continuous wave (FMCW) technology. A novel geometric configuration and an imaging algorithm for helicopter-borne FMCW-ROSAR are proposed. Firstly, by per- forming the equivalent phase center principle, the separated trans- mitting and receiving antenna system is equalized to the case of system configuration with antenna for both transmitting and receiving signals. Based on this, the accurate two-dimensional spectrum is obtained and the Doppler frequency shift effect in- duced by the continuous motion of the platform during the long pulse duration is compensated. Next, the impacts of the velocity approximation error on the imaging algorithm are analyzed in de- tail, and the system parameters selection and resolution analysis are presented. The well-focused SAR image is then obtained by using the improved Omega-K algorithm incorporating the accurate compensation method for the velocity approximation error. FJnally, correctness of the analysis and effectiveness of the proposed al- gorithm are demonstrated through simulation results.展开更多
A novel wavelength modulation spectroscopy sensor for studying gas properties near 1.4 μm is developed, validated and used in a direct-connect supersonic combustion test facility. In this sensor there are two H2O tra...A novel wavelength modulation spectroscopy sensor for studying gas properties near 1.4 μm is developed, validated and used in a direct-connect supersonic combustion test facility. In this sensor there are two H2O transitions near 7185.60 cm^-1 and 7454.45 cm^-1 that are used to enable the measurements along the line-of-sight. According to an iterative algorithm, the gas pressure, temperature and species mole fraction can be measured simultaneously. The new sensor is used in the isolator and extender of the supersonic combustion test facility. In the isolator, the sensor resolves the transient and measured pressure, temperature and H2O mole fraction with accuracies of 2.5%, 8.2%, and 7.2%, respectively. Due to the non-uniform characteristic in the extender, the measured results cannot precisely characterize gas properties, but they can qualitatively describe the distinctions of different zones or the changes or fluctuations of the gas parameters.展开更多
A semi-blind adaptive beamforming scheme is proposed for wireless systems that employ high-throughput quadrature amplitude modulation signalling. A minimum number of training symbols, equal to the number of receiver a...A semi-blind adaptive beamforming scheme is proposed for wireless systems that employ high-throughput quadrature amplitude modulation signalling. A minimum number of training symbols, equal to the number of receiver antenna arrayts elements, are first utilised to provide a rough initial least squares estimate of the beamformer's weight vector. A concurrent constant modulus algorithm and soft decision-directed scheme is then applied to adapt the beamformer. This semi-blind adaptive beamforming scheme is capable of converging fast to the minimum mean-square-error beamforming solution, as demonstrated in our simulation study.展开更多
The high voltage power supply (HVPS) based on pulse step modulation (PSM) has already been developed for the auxiliary heating system on HL-2A. This power supply consists of many switch power supplies, and its out...The high voltage power supply (HVPS) based on pulse step modulation (PSM) has already been developed for the auxiliary heating system on HL-2A. This power supply consists of many switch power supplies, and its output voltage can be obtained by modulating their delay time and pulse widths. The PSM topology and control principle are presented in this paper. The simple algorithms for the control system are explained clearly. The switch power supply (SPS) module has been built and the test results show it can meet the requirements of the auxiliary heating system. Now, 112 SPS modules and the whole system have already been developed. Its maximum output is about 72 kV/93 A. The protection time is less than 5 t*s. The different outputs of this power supply are used for the electron cyclotron resonant heating (ECRH) system with different duty ratios. The experimental results of the entire system are presented. The results indicate that the whole system can meet the requirements of the auxiliary heating system on HL-2A.展开更多
Stochastic resonance system is subject to the restriction of small frequency parameter in weak signal detection,in order to solve this problem,a frequency modulated weak signal detection method based on stochastic res...Stochastic resonance system is subject to the restriction of small frequency parameter in weak signal detection,in order to solve this problem,a frequency modulated weak signal detection method based on stochastic resonance and genetic algorithm is presented in this paper. The frequency limit of stochastic resonance is eliminated by introducing carrier signal,which is multiplied with the measured signal to be injected in the stochastic resonance system,meanwhile,using genetic algorithm to optimize the carrier signal frequency,which determine the generated difference-frequency signal in the lowfrequency range,so as to achieve the stochastic resonance weak signal detection. Results showthat the proposed method is feasible and effective,which can significantly improve the output SNR of stochastic resonance,in addition,the system has the better self-adaptability,according to the operation result and output phenomenon,the unknown frequency of the signal to be measured can be obtained,so as to realize the weak signal detection of arbitrary frequency.展开更多
Considering high-order digital modulation schemes, the bottleneck in consumer products is the detector rather than the modulator. The complexity of the optimal a posteriori probability (APP) detector increases expon...Considering high-order digital modulation schemes, the bottleneck in consumer products is the detector rather than the modulator. The complexity of the optimal a posteriori probability (APP) detector increases exponentially with respect to the number of modulated bits per data symbol. Thus, it is necessary to develop low-complexity detection algorithms with an APP-like performance, especially when performing iterative detection, for example in conjunction with bit interleaved coded modulation. We show that a special case of superposition modulation, dubbed Direct Superposition Modulation (DSM), is particularly suitable for complexity reduction at the receiver side. As opposed to square QAM, DSM achieves capacity without active signal shaping. The main contribution is a low-cost detection algorithm for DSM, which enables iterative detection by taking a priori information into account. This algorithm exploits the approximate piecewise linear behavior of the soft outputs of an APP detector over the entire range of detector input values. A theoretical analysis and simulation results demonstrate that at least max-log APP performance can be reached, while the complexity is significantly reduced compared to classical APP detection.展开更多
This paper partitions the arm current of MMC into uncontrollable current and controllable current. The former is determined by the load that can’t be controlled by taking any control strategy. The later caused by the...This paper partitions the arm current of MMC into uncontrollable current and controllable current. The former is determined by the load that can’t be controlled by taking any control strategy. The later caused by the unbalanced total inserted voltage of three arms can be controlled by some improved algorithms. The conclusion based on the researching the essence of circulating current is reached that change the number of the inserted sub-modules in each phase can suppress the circulating current. Combined with the improved ladder wave modulation, a novel circulating current suppression strategy particularly for the inverter station is developed. The improved strategy can adapt to load changes and reduce the circulating current and output voltage THD of MMC ac terminals greatly without increasing any peripheral circuits. Finally, the simulation model of 100 submodules in each phase is constructed in MATLAB and the simulation results verify the correctness and effectiveness of the modified control algorithm.展开更多
This paper presents a timing-driven MultiChip Module (MCM) routing algorithm considering crosstalk, which maximizes routing density while minimizing vias and total wire length. The routing algorithm allows a more glob...This paper presents a timing-driven MultiChip Module (MCM) routing algorithm considering crosstalk, which maximizes routing density while minimizing vias and total wire length. The routing algorithm allows a more global solution as well as the incorporation of more accurate crosstalk modeling. In addition, various time domain characteristics of MCM are analyzed in this contribution. A deembedding technique for the S -parametercalculation is presented and functions for the time-domain signals are investigated in order to decrease the computation time. Routing results show that the proposed algorithm consistently produces the better results than other previously proposed routers while offering flexibility for future incorporation of noise and delay constraints.展开更多
A dual N-ary orthogonal hybrid modulation system is introduced in this paper, which can increase the data rate greatly compared with conventional N-ary orthogonal spread spectrum system, so it can be used for high rat...A dual N-ary orthogonal hybrid modulation system is introduced in this paper, which can increase the data rate greatly compared with conventional N-ary orthogonal spread spectrum system, so it can be used for high rate data communication. Then, three code recognition algorithms are presented for dual N-ary orthogonal hybrid modulation system and the analytic bit error rate (BER) performance of the system in additive white Gaussian noise (AWGN) and fiat Rayleigh fading channel is derived. Finally, the computer simulation of the system with three code recognition algorithms is performed, which shows that the simplified maximum a posteriori (MAP) algorithm is the best for the system with a compromise between the performance and the complexity.展开更多
A challenging task when applying high-order digital modulation schemes is the complexity of the detector. Particularly, the complexity of the optimal a posteriori probability (APP) detector increases exponentially w...A challenging task when applying high-order digital modulation schemes is the complexity of the detector. Particularly, the complexity of the optimal a posteriori probability (APP) detector increases exponentially with respect to the number of bits per data symbol. This statement is also true for the Max-Log-APP detector, which is a common simplification of the APP detector. Thus it is important to design new detection algorithms which combine a sufficient performance with low complexity. In this contribution, a detection algorithm for two- dimensional digital modulation schemes which cannot be split-up into real and imaginary parts (like phase shift keying and phase-shifted snperposition modulation (PSM)) is proposed with emphasis on PSM with equal power allocation. This algorithm exploits the relationship between Max-Log-APP detection and a Voronoi diagram to determine planar surfaces of the soft outputs over the entire range of detector input values. As opposed to state-of-the-art detectors based on Voronoi surfaces, a priori information is taken into account, enabling iterative processing. Since the algorithm achieves Max-Log-APP performance, even in the presence of a priori information, this implies a great potential for complexity reduction compared to the classical APP detection.展开更多
This paper presents a unique voltage-raising topology for a single-phase seven-level inverter with triple output voltage gain using single input source and two switched capacitors.The output voltage has been boosted u...This paper presents a unique voltage-raising topology for a single-phase seven-level inverter with triple output voltage gain using single input source and two switched capacitors.The output voltage has been boosted up to three times the value of input voltage by configuring the switched capacitors in series and parallel combinations which eliminates the use of additional step-up converters and transformers.The selective harmonic elimination(SHE)approach is used to remove the lower-order harmonics.The optimal switching angles for SHE is determined using the genetic algorithm.These switching angles are com-bined with a level-shifted pulse width modulation(PWM)technique for pulse generation,resulting in reduced total harmonic distortion(THD).A detailed com-parison has been made against other relevant seven-level inverter topologies in terms of the number of switches,drivers,diodes,capacitors,and boosting facil-ities to emphasize the benefits of the proposed model.The proposed topology is simulated using MATLAB/SIMULINK and an experimental prototype has been developed to validate the results.The Digital Signal Processing(DSP)TMS320F2812 board is used to generate the switching pulses for the proposed technique and the experimental results concur with the simulated model outputs.展开更多
Frequency-Modulation Continuous-Wave Synthetic Aperture Radar(FMCW SAR)has shown great potential in the applications of civil and military fields because of its easy deployment and low cost.However,most of these work ...Frequency-Modulation Continuous-Wave Synthetic Aperture Radar(FMCW SAR)has shown great potential in the applications of civil and military fields because of its easy deployment and low cost.However,most of these work and analysis are concentrated on airborne FMCW SAR,where the characteristics of the imaging geometry and signal are much similar to that of traditional pulsed-SAR.As a result,a series of test campaigns of automobile-based FMCW SAR were sponsored by Institute of Electronics,Chinese Academy of Sciences(IECAS)in the autumn of 2012.In this paper,we analyze the imaging issues of FMCW SAR in automobile mode(named as near range mode),where a vehicle is used as moving platform and a large looking angle is configured.The imaging geometry and signal properties are analyzed in detail.We emphasize the difference of the near range mode from the traditional airborne SAR mode.Based on the analysis,a focusing approach is proposed in the paper to handle the data focusing in the case.Simulation experiment and real data of automobile FMCW SAR are used to validate the analysis.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)under Grant No.62061024the Project of Gansu Province Science and Technology Department under Grant No.22ZD6GA055.
文摘Differential spatial modulation(DSM)is a multiple-input multiple-output(MIMO)transmission scheme.It has attracted extensive research interest due to its ability to transmit additional data without increasing any radio frequency chain.In this paper,DSM is investigated using two mapping algorithms:Look-Up Table Order(LUTO)and Permutation Method(PM).Then,the bit error rate(BER)performance and complexity of the two mapping algorithms in various antennas and modulation methods are verified by simulation experiments.The results show that PM has a lower BER than the LUTO mapping algorithm,and the latter has lower complexity than the former.
文摘In order to further analyze the micro-motion modulation signals generated by rotating components and extract micro-motion features,a modulation signal denoising algorithm based on improved variational mode decomposition(VMD)is proposed.To improve the time-frequency performance,this method decomposes the data into narrowband signals and analyzes the internal energy and frequency variations within the signal.Genetic algorithms are used to adaptively optimize the mode number and bandwidth control parameters in the process of VMD.This approach aims to obtain the optimal parameter combination and perform mode decomposition on the micro-motion modulation signal.The optimal mode number and quadratic penalty factor for VMD are determined.Based on the optimal values of the mode number and quadratic penalty factor,the original signal is decomposed using VMD,resulting in optimal mode number intrinsic mode function(IMF)components.The effective modes are then reconstructed with the denoised modes,achieving signal denoising.Through experimental data verification,the proposed algorithm demonstrates effective denoising of modulation signals.In simulation data validation,the algorithm achieves the highest signal-to-noise ratio(SNR)and exhibits the best performance.
基金supported in part by the National Natural Science Foundation of China under Grand No.61871129 and No.61301179Projects of Science and Technology Plan Guangdong Province under Grand No.2014A010101284
文摘For the existing support vector machine, when recognizing more questions, the shortcomings of high computational complexity and low recognition rate under the low SNR are emerged. The characteristic parameter of the signal is extracted and optimized by using a clustering algorithm, support vector machine is trained by grading algorithm so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram in this paper. Simulation results show that the average recognition rate based on this algorithm is enhanced over 30% compared with methods that adopting clustering algorithm or support vector machine respectively under the low SNR. The average recognition rate can reach 90% when the SNR is 5 dB, and the method is easy to be achieved so that it has broad application prospect in the modulating recognition.
基金supported by the National Natural Science Foundation of China(6107207061301179)the National Science and Technology Major Project(2010ZX03006-002-04)
文摘To improve the recognition rate of signal modulation recognition methods based on the clustering algorithm under the low SNR, a modulation recognition method is proposed. The characteristic parameter of the signal is extracted by using a clustering algorithm, the neural network is trained by using the algorithm of variable gradient correction (Polak-Ribiere) so as to enhance the rate of convergence, improve the performance of recognition under the low SNR and realize modulation recognition of the signal based on the modulation system of the constellation diagram. Simulation results show that the recognition rate based on this algorithm is enhanced over 30% compared with the methods that adopt clustering algorithm or neural network based on the back propagation algorithm alone under the low SNR. The recognition rate can reach 90% when the SNR is 4 dB, and the method is easy to be achieved so that it has a broad application prospect in the modulating recognition.
基金supported by the National Natural Science Foundation of China(6127125061571460)
文摘A hybrid carrier(HC) scheme based on weighted-type fractional Fourier transform(WFRFT) has been proposed recently.While most of the works focus on HC scheme's inherent characteristics, little attention is paid to the WFRFT modulation recognition.In this paper, a new theory is provided to recognize the WFRFT modulation based on higher order cumulants(HOC). First, it is deduced that the optimal WFRFT received order can be obtained through the minimization of 4 th-order cumulants, C_(42). Then, a combinatorial searching algorithm is designed to minimize C_(42).Finally, simulation results show that the designed scheme has a high recognition rate and the combinatorial searching algorithm is effective and reliable.
基金This work was supported by the NSFC(Grant Nos.61671087,61962009 and 61003287)the Fok Ying Tong Education Foundation(Grant No.131067)+3 种基金the Major Scientific and Technological Special Project of Guizhou Province(Grant No.20183001)the Foundation of State Key Laboratory of Public Big Data(Grant No.2018BDKFJJ018)the High-quality and Cutting-edge Disciplines Construction Project for Universities in Beijing(Internet Information,Communication University of China)the Fundamental Research Funds for the Central Universities(Nos.2019XD-A02,328201915,328201917 and 328201916).
文摘Directional modulation is one of the hot topics in data security researches.To fulfill the requirements of communication security in wireless environment with multiple paths,this study takes into account the factors of reflections and antenna radiation pattern for directional modulation.Unlike other previous works,a novel multiple-reflection model,which is more realistic and complex than simplified two-ray reflection models,is proposed based on two reflectors.Another focus is a quantum genetic algorithm applied to optimize antenna excitation in a phased directional modulation antenna array.The quantum approach has strengths in convergence speed and the globe searching ability for the complicated model with the large-size antenna array and multiple paths.From this,a phased directional modulation transmission system can be optimized as regards communication safety and improve performance based on the constraint of the pattern of the antenna array.Our work can spur applications of the quantum evolutionary algorithm in directional modulation technology,which is also studied.
基金The National Natural Science Foundation of China(No60572072,60496311)the National High Technology Research and Development Program of China (863Program) (No2006AA01Z264)+1 种基金the National Basic Research Program of China (973Program) (No2007CB310603)the PhD Programs Foundation of Ministry of Educa-tion of China (No20060286016)
文摘The performance loss of an approximately 3 dB signal-to-noise ratio is always paid with conventional differential detection compared to the related coherent detection. A new detection scheme consisting of two steps is proposed for the differential unitary space-time modulation (DUSTM) system. In the first step, the data sequence is estimated by conventional unitary space-time demodulation (DUSTD) and differentially encoded again to produce an initial estimate of the transmitted symbol stream. In the second step, the initial estimate of the symbol stream is utilized to initialize an expectation maximization (EM)-based iterative detector. In each iteration, the most recent detected symbol stream is employed to estimate the channel, which is then used to implement coherent sequence detection to refine the symbol stream. Simulation results show that the proposed detection scheme performs much better than the conventional DUSTD after several iterations.
基金supported by the National Basic Research Program of China(2011CB707001)the Fundamental Research Funds for the Central Universities(106112015CDJXY500001CDJZR165505)
文摘With appropriate geometry configuration, helicopter- borne rotating synthetic aperture radar (ROSAR) can break through the limitations of monostatic synthetic aperture radar (SAR) on forward-looking imaging. With this capability, ROSAR has extensive potential applications, such as self-navigation and self-landing. Moreover, it has many advantages if combined with the frequency modulated continuous wave (FMCW) technology. A novel geometric configuration and an imaging algorithm for helicopter-borne FMCW-ROSAR are proposed. Firstly, by per- forming the equivalent phase center principle, the separated trans- mitting and receiving antenna system is equalized to the case of system configuration with antenna for both transmitting and receiving signals. Based on this, the accurate two-dimensional spectrum is obtained and the Doppler frequency shift effect in- duced by the continuous motion of the platform during the long pulse duration is compensated. Next, the impacts of the velocity approximation error on the imaging algorithm are analyzed in de- tail, and the system parameters selection and resolution analysis are presented. The well-focused SAR image is then obtained by using the improved Omega-K algorithm incorporating the accurate compensation method for the velocity approximation error. FJnally, correctness of the analysis and effectiveness of the proposed al- gorithm are demonstrated through simulation results.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.21403299)
文摘A novel wavelength modulation spectroscopy sensor for studying gas properties near 1.4 μm is developed, validated and used in a direct-connect supersonic combustion test facility. In this sensor there are two H2O transitions near 7185.60 cm^-1 and 7454.45 cm^-1 that are used to enable the measurements along the line-of-sight. According to an iterative algorithm, the gas pressure, temperature and species mole fraction can be measured simultaneously. The new sensor is used in the isolator and extender of the supersonic combustion test facility. In the isolator, the sensor resolves the transient and measured pressure, temperature and H2O mole fraction with accuracies of 2.5%, 8.2%, and 7.2%, respectively. Due to the non-uniform characteristic in the extender, the measured results cannot precisely characterize gas properties, but they can qualitatively describe the distinctions of different zones or the changes or fluctuations of the gas parameters.
文摘A semi-blind adaptive beamforming scheme is proposed for wireless systems that employ high-throughput quadrature amplitude modulation signalling. A minimum number of training symbols, equal to the number of receiver antenna arrayts elements, are first utilised to provide a rough initial least squares estimate of the beamformer's weight vector. A concurrent constant modulus algorithm and soft decision-directed scheme is then applied to adapt the beamformer. This semi-blind adaptive beamforming scheme is capable of converging fast to the minimum mean-square-error beamforming solution, as demonstrated in our simulation study.
文摘The high voltage power supply (HVPS) based on pulse step modulation (PSM) has already been developed for the auxiliary heating system on HL-2A. This power supply consists of many switch power supplies, and its output voltage can be obtained by modulating their delay time and pulse widths. The PSM topology and control principle are presented in this paper. The simple algorithms for the control system are explained clearly. The switch power supply (SPS) module has been built and the test results show it can meet the requirements of the auxiliary heating system. Now, 112 SPS modules and the whole system have already been developed. Its maximum output is about 72 kV/93 A. The protection time is less than 5 t*s. The different outputs of this power supply are used for the electron cyclotron resonant heating (ECRH) system with different duty ratios. The experimental results of the entire system are presented. The results indicate that the whole system can meet the requirements of the auxiliary heating system on HL-2A.
基金supported by the National Natural Science Foundation of China (Grant No. 61072133)the Production,Learning and Research Joint Innovation Program of Jiangsu Province,China (Grant Nos. BY2013007-02,SBY201120033)+2 种基金the Industrialization of Research Findings Promotion Program of Institution of Higher Education of Jiangsu Province,China (Grant No. JHB2011-15)the advantage discipline platform "information and Communication Engineering" of Jiangsu Province,Chinathe "Summit of the Six Top Talents" Program of Jiangsu Province,China
文摘Stochastic resonance system is subject to the restriction of small frequency parameter in weak signal detection,in order to solve this problem,a frequency modulated weak signal detection method based on stochastic resonance and genetic algorithm is presented in this paper. The frequency limit of stochastic resonance is eliminated by introducing carrier signal,which is multiplied with the measured signal to be injected in the stochastic resonance system,meanwhile,using genetic algorithm to optimize the carrier signal frequency,which determine the generated difference-frequency signal in the lowfrequency range,so as to achieve the stochastic resonance weak signal detection. Results showthat the proposed method is feasible and effective,which can significantly improve the output SNR of stochastic resonance,in addition,the system has the better self-adaptability,according to the operation result and output phenomenon,the unknown frequency of the signal to be measured can be obtained,so as to realize the weak signal detection of arbitrary frequency.
文摘Considering high-order digital modulation schemes, the bottleneck in consumer products is the detector rather than the modulator. The complexity of the optimal a posteriori probability (APP) detector increases exponentially with respect to the number of modulated bits per data symbol. Thus, it is necessary to develop low-complexity detection algorithms with an APP-like performance, especially when performing iterative detection, for example in conjunction with bit interleaved coded modulation. We show that a special case of superposition modulation, dubbed Direct Superposition Modulation (DSM), is particularly suitable for complexity reduction at the receiver side. As opposed to square QAM, DSM achieves capacity without active signal shaping. The main contribution is a low-cost detection algorithm for DSM, which enables iterative detection by taking a priori information into account. This algorithm exploits the approximate piecewise linear behavior of the soft outputs of an APP detector over the entire range of detector input values. A theoretical analysis and simulation results demonstrate that at least max-log APP performance can be reached, while the complexity is significantly reduced compared to classical APP detection.
文摘This paper partitions the arm current of MMC into uncontrollable current and controllable current. The former is determined by the load that can’t be controlled by taking any control strategy. The later caused by the unbalanced total inserted voltage of three arms can be controlled by some improved algorithms. The conclusion based on the researching the essence of circulating current is reached that change the number of the inserted sub-modules in each phase can suppress the circulating current. Combined with the improved ladder wave modulation, a novel circulating current suppression strategy particularly for the inverter station is developed. The improved strategy can adapt to load changes and reduce the circulating current and output voltage THD of MMC ac terminals greatly without increasing any peripheral circuits. Finally, the simulation model of 100 submodules in each phase is constructed in MATLAB and the simulation results verify the correctness and effectiveness of the modified control algorithm.
基金Supported by National Defence Fund of China (No. 41323020204).
文摘This paper presents a timing-driven MultiChip Module (MCM) routing algorithm considering crosstalk, which maximizes routing density while minimizing vias and total wire length. The routing algorithm allows a more global solution as well as the incorporation of more accurate crosstalk modeling. In addition, various time domain characteristics of MCM are analyzed in this contribution. A deembedding technique for the S -parametercalculation is presented and functions for the time-domain signals are investigated in order to decrease the computation time. Routing results show that the proposed algorithm consistently produces the better results than other previously proposed routers while offering flexibility for future incorporation of noise and delay constraints.
基金the National Basic Research Program of China(No5130601)Jiangsu Provincial Natural Science Foundation(NoBK2006701)
文摘A dual N-ary orthogonal hybrid modulation system is introduced in this paper, which can increase the data rate greatly compared with conventional N-ary orthogonal spread spectrum system, so it can be used for high rate data communication. Then, three code recognition algorithms are presented for dual N-ary orthogonal hybrid modulation system and the analytic bit error rate (BER) performance of the system in additive white Gaussian noise (AWGN) and fiat Rayleigh fading channel is derived. Finally, the computer simulation of the system with three code recognition algorithms is performed, which shows that the simplified maximum a posteriori (MAP) algorithm is the best for the system with a compromise between the performance and the complexity.
文摘A challenging task when applying high-order digital modulation schemes is the complexity of the detector. Particularly, the complexity of the optimal a posteriori probability (APP) detector increases exponentially with respect to the number of bits per data symbol. This statement is also true for the Max-Log-APP detector, which is a common simplification of the APP detector. Thus it is important to design new detection algorithms which combine a sufficient performance with low complexity. In this contribution, a detection algorithm for two- dimensional digital modulation schemes which cannot be split-up into real and imaginary parts (like phase shift keying and phase-shifted snperposition modulation (PSM)) is proposed with emphasis on PSM with equal power allocation. This algorithm exploits the relationship between Max-Log-APP detection and a Voronoi diagram to determine planar surfaces of the soft outputs over the entire range of detector input values. As opposed to state-of-the-art detectors based on Voronoi surfaces, a priori information is taken into account, enabling iterative processing. Since the algorithm achieves Max-Log-APP performance, even in the presence of a priori information, this implies a great potential for complexity reduction compared to the classical APP detection.
文摘This paper presents a unique voltage-raising topology for a single-phase seven-level inverter with triple output voltage gain using single input source and two switched capacitors.The output voltage has been boosted up to three times the value of input voltage by configuring the switched capacitors in series and parallel combinations which eliminates the use of additional step-up converters and transformers.The selective harmonic elimination(SHE)approach is used to remove the lower-order harmonics.The optimal switching angles for SHE is determined using the genetic algorithm.These switching angles are com-bined with a level-shifted pulse width modulation(PWM)technique for pulse generation,resulting in reduced total harmonic distortion(THD).A detailed com-parison has been made against other relevant seven-level inverter topologies in terms of the number of switches,drivers,diodes,capacitors,and boosting facil-ities to emphasize the benefits of the proposed model.The proposed topology is simulated using MATLAB/SIMULINK and an experimental prototype has been developed to validate the results.The Digital Signal Processing(DSP)TMS320F2812 board is used to generate the switching pulses for the proposed technique and the experimental results concur with the simulated model outputs.
文摘Frequency-Modulation Continuous-Wave Synthetic Aperture Radar(FMCW SAR)has shown great potential in the applications of civil and military fields because of its easy deployment and low cost.However,most of these work and analysis are concentrated on airborne FMCW SAR,where the characteristics of the imaging geometry and signal are much similar to that of traditional pulsed-SAR.As a result,a series of test campaigns of automobile-based FMCW SAR were sponsored by Institute of Electronics,Chinese Academy of Sciences(IECAS)in the autumn of 2012.In this paper,we analyze the imaging issues of FMCW SAR in automobile mode(named as near range mode),where a vehicle is used as moving platform and a large looking angle is configured.The imaging geometry and signal properties are analyzed in detail.We emphasize the difference of the near range mode from the traditional airborne SAR mode.Based on the analysis,a focusing approach is proposed in the paper to handle the data focusing in the case.Simulation experiment and real data of automobile FMCW SAR are used to validate the analysis.