The power consumption is rapidly increased due to ASD(Adjustable Speed Drives)and automation in industries and large consumption of electricity in domestic regions increased the concern of the power quality.The qualit...The power consumption is rapidly increased due to ASD(Adjustable Speed Drives)and automation in industries and large consumption of electricity in domestic regions increased the concern of the power quality.The quality of the power received in the distribution system is altered because of the losses in the transmission system.The losses in the transmission system are mitigated using the FACTS(Flexible AC Transmission System)controller,among these controllers UPFC(Unified Power Flow Controller)plays a vital role in controlling the shunt and series reactive powers in the bus of the power system.The conventional topology of the UPFC consists of AC-DC converter and energy stored in the DC link and DC-AC converter injected a voltage in series to the bus which is to be controlled.Whereas a new topology based on matrix converter can replace the dual converters and perform the required task.The construction of 2-bus,7-bus and IEEE-14-bus power system is designed and modeled.MC-UPFC(Matrix Converter Based Unified Power Flow Controller)is designed and constructed.The MC-UPFC is the rich topology in the FACTS which is capable of controlling both the transmission parameters simultaneously with the switching technique of direct power control by the smooth sliding control which gives less ripple in the injecting control parameters such as control voltage(Vc)and voltage angle(α).By implementing MC-UPFC the real and reactive power can be controlled simultaneously and independently.The control techniques were designed based on the PID(Proportional Integral Derivative)with sliding surface power control,FLC(Fuzzy Logic Controller)and ANN(Artificial Neural Network)and the performances of Vc andαof the controllers are investigated.Hence the sliding surface and relevant control switching state of the MC can be controlled by the FLC which gives the robust and autonomous decision made in the selection of the appropriate switching state for the effective real power control in the power system.The work has been carried out in the MATLAB Simulink simulator which gives the finest controlling features and simple design procedures and monitoring of the output.展开更多
Firefly algorithm is the new intelligent algorithm used for all complex engineering optimization problems. Power system has many complex optimization problems one of which is the optimal power flow (OPF). Basically, i...Firefly algorithm is the new intelligent algorithm used for all complex engineering optimization problems. Power system has many complex optimization problems one of which is the optimal power flow (OPF). Basically, it is minimizing optimization problem and subjected to many complex objective functions and constraints. Hence, firefly algorithm is used to solve OPF in this paper. The aim of the firefly is to optimize the control variables, namely generated real power, voltage magnitude and tap setting of transformers. Flexible AC Transmission system (FACTS) devices may used in the power system to improve the quality of the power supply and to reduce the cost of the generation. FACTS devices are classified into series, shunt, shunt-series and series-series connected devices. Unified power flow controller (UPFC) is shunt-series type device that posses all capabilities to control real, reactive powers, voltage and reactance of the connected line in the power system. Hence, UPFC is included in the considered IEEE 30 bus for the OPF solution.展开更多
On the basis of the theoretical analysis of a single-machine infinite-bus (SMIB), using the modified linearized Phil- lips-Heffron model installed with unified power flow controller (UPFC), the potential of the UP...On the basis of the theoretical analysis of a single-machine infinite-bus (SMIB), using the modified linearized Phil- lips-Heffron model installed with unified power flow controller (UPFC), the potential of the UPFC supplementary controller to enhance the dynamic stability of a power system is evaluated by measuring the electromechanical controllability through singular value decomposition (SVD) analysis. This controller is tuned to simultaneously shift the undamped electromeehanical modes to a prescribed zone in the s-plane. The problem of robust UPFC based damping controller is formulated as an optimization problem according to the eigenvalue-based multi-objective function comprising the damping factor, and the damping ratio of the undamped electromechanical modes to be solved using gravitational search algorithm (GSA) that has a strong ability to find the most optimistic results. The different loading conditions are simulated on a SMIB system and the rotor speed deviation, internal voltage deviation, DC voltage deviation and electrical power deviation responses are studied with the effect of this flexible AC transmission systems (FACTS) controller. The results reveal that the tuned GSA based UPFC controller using the proposed multi-objective function has an excellent capability in damping power system with low frequency oscillations and greatly enhances the dynamic stability of the power systems.展开更多
The access of unified power flow controllers(UPFC)has changed the structure and operation mode of power grids all across the world,and it has brought severe challenges to the traditional real-time calculation of secur...The access of unified power flow controllers(UPFC)has changed the structure and operation mode of power grids all across the world,and it has brought severe challenges to the traditional real-time calculation of security correction based on traditionalmodels.Considering the limitation of computational efficiency regarding complex,physical models,a data-driven power system security correction method with UPFC is,in this paper,proposed.Based on the complex mapping relationship between the operation state data and the security correction strategy,a two-stage deep neural network(DNN)learning framework is proposed,which divides the offline training task of security correction into two stages:in the first stage,the stacked auto-encoder(SAE)classification model is established,and the node correction state(0/1)output based on the fault information;in the second stage,the DNN learningmodel is established,and the correction amount of each action node is obtained based on the action nodes output in the previous stage.In this paper,the UPFC demonstration project of NanjingWest Ring Network is taken as a case study to validate the proposed method.The results show that the proposed method can fully meet the real-time security correction time requirements of power grids,and avoid the inherent defects of the traditional model method without an iterative solution and can also provide reasonable security correction strategies for N-1 and N-2 faults.展开更多
Flexible alternating current transmission system(FACTS)components are used to utilize the electrical transmission lines at their optimum capacity.The best way to achieve this optimization is to manage the active and r...Flexible alternating current transmission system(FACTS)components are used to utilize the electrical transmission lines at their optimum capacity.The best way to achieve this optimization is to manage the active and reactive power flows.A unified power flow controller(UPFC)is one of the most significant devices developed for the effective control of power flows.Although conventional UPFC structures can be used to achieve this process,the expansion of power systems has led to the necessity of developing various UPFC devices.This paper focuses on an advanced real time control approach of UPFC for dynamic voltage regulation.The developed model is incorporated in the Gauss-Seidel(GS)power flow algorithm and the proposed method is validated on the IEEE-30 bus system that is designed under MATLAB/Simulink platform.As the proposed method was validated by comparing with the normal operating conditions,advantages were observed on two cases.In the first case,a generator outage is applied to system to observe behavior of proposed model in power loss conditions.In the second case,line fault conditions were used for observation.The results from testing the model for both cases prove that the approach has positive effects on dynamic power systems.展开更多
基于传统的比例—积分控制,提出了统一潮流控制器(unified power flow controller,UPFC)并、串联侧解耦的系统级控制策略,其控制目的是在并联侧维持UPFC并入点的交流电压和直流侧电容电压,在串联侧控制线路有功、无功潮流。文章首先介...基于传统的比例—积分控制,提出了统一潮流控制器(unified power flow controller,UPFC)并、串联侧解耦的系统级控制策略,其控制目的是在并联侧维持UPFC并入点的交流电压和直流侧电容电压,在串联侧控制线路有功、无功潮流。文章首先介绍了所研制的UPFC实验系统平台,并在此基础上详细地给出了UPFC系统级控制器的硬件实现,实验平台的通用性决定了不同控制策略可以较容易地实现。为验证所提出的控制策略的控制效果,文中将UPFC实验装置嵌入至自行搭制的等效双机实验系统中,实验结果与PSCAD/EMTDC仿真环境下的时域动态仿真结果十分相似,从而得到了良好的UPFC动态特性。展开更多
为了将统一潮流控制器UPFC(unified power flow controlle)r嵌入到商业软件中,采用节点注入电流法建立了UPFC的潮流控制模型。该模型通过控制UPFC串联侧节点的注入电流和并联侧节点的无功注入电流来控制线路潮流和UPFC接入点母线电压,其...为了将统一潮流控制器UPFC(unified power flow controlle)r嵌入到商业软件中,采用节点注入电流法建立了UPFC的潮流控制模型。该模型通过控制UPFC串联侧节点的注入电流和并联侧节点的无功注入电流来控制线路潮流和UPFC接入点母线电压,其中,串联侧节点的注入电流通过功率目标方程直接求取,并联侧节点的无功注入电流通过引入被控母线电压的参考值与实际值的偏差求得。基于电力系统分析综合程序PSASP(power system analysis software package)进行了算例研究,结果表明所建模型能有效实现UPFC的潮流控制作用,且具有较快的潮流追踪速度和较高的收敛精度。对其他FACTS(flexible AC transmission system)器件的控制建模具有一定的参考价值。展开更多
文摘The power consumption is rapidly increased due to ASD(Adjustable Speed Drives)and automation in industries and large consumption of electricity in domestic regions increased the concern of the power quality.The quality of the power received in the distribution system is altered because of the losses in the transmission system.The losses in the transmission system are mitigated using the FACTS(Flexible AC Transmission System)controller,among these controllers UPFC(Unified Power Flow Controller)plays a vital role in controlling the shunt and series reactive powers in the bus of the power system.The conventional topology of the UPFC consists of AC-DC converter and energy stored in the DC link and DC-AC converter injected a voltage in series to the bus which is to be controlled.Whereas a new topology based on matrix converter can replace the dual converters and perform the required task.The construction of 2-bus,7-bus and IEEE-14-bus power system is designed and modeled.MC-UPFC(Matrix Converter Based Unified Power Flow Controller)is designed and constructed.The MC-UPFC is the rich topology in the FACTS which is capable of controlling both the transmission parameters simultaneously with the switching technique of direct power control by the smooth sliding control which gives less ripple in the injecting control parameters such as control voltage(Vc)and voltage angle(α).By implementing MC-UPFC the real and reactive power can be controlled simultaneously and independently.The control techniques were designed based on the PID(Proportional Integral Derivative)with sliding surface power control,FLC(Fuzzy Logic Controller)and ANN(Artificial Neural Network)and the performances of Vc andαof the controllers are investigated.Hence the sliding surface and relevant control switching state of the MC can be controlled by the FLC which gives the robust and autonomous decision made in the selection of the appropriate switching state for the effective real power control in the power system.The work has been carried out in the MATLAB Simulink simulator which gives the finest controlling features and simple design procedures and monitoring of the output.
文摘Firefly algorithm is the new intelligent algorithm used for all complex engineering optimization problems. Power system has many complex optimization problems one of which is the optimal power flow (OPF). Basically, it is minimizing optimization problem and subjected to many complex objective functions and constraints. Hence, firefly algorithm is used to solve OPF in this paper. The aim of the firefly is to optimize the control variables, namely generated real power, voltage magnitude and tap setting of transformers. Flexible AC Transmission system (FACTS) devices may used in the power system to improve the quality of the power supply and to reduce the cost of the generation. FACTS devices are classified into series, shunt, shunt-series and series-series connected devices. Unified power flow controller (UPFC) is shunt-series type device that posses all capabilities to control real, reactive powers, voltage and reactance of the connected line in the power system. Hence, UPFC is included in the considered IEEE 30 bus for the OPF solution.
文摘On the basis of the theoretical analysis of a single-machine infinite-bus (SMIB), using the modified linearized Phil- lips-Heffron model installed with unified power flow controller (UPFC), the potential of the UPFC supplementary controller to enhance the dynamic stability of a power system is evaluated by measuring the electromechanical controllability through singular value decomposition (SVD) analysis. This controller is tuned to simultaneously shift the undamped electromeehanical modes to a prescribed zone in the s-plane. The problem of robust UPFC based damping controller is formulated as an optimization problem according to the eigenvalue-based multi-objective function comprising the damping factor, and the damping ratio of the undamped electromechanical modes to be solved using gravitational search algorithm (GSA) that has a strong ability to find the most optimistic results. The different loading conditions are simulated on a SMIB system and the rotor speed deviation, internal voltage deviation, DC voltage deviation and electrical power deviation responses are studied with the effect of this flexible AC transmission systems (FACTS) controller. The results reveal that the tuned GSA based UPFC controller using the proposed multi-objective function has an excellent capability in damping power system with low frequency oscillations and greatly enhances the dynamic stability of the power systems.
基金supported in part by Science and Technology Projects of Electric Power Research Institute of State Grid Jiangsu Electric Power Co.,Ltd.(J2021171).
文摘The access of unified power flow controllers(UPFC)has changed the structure and operation mode of power grids all across the world,and it has brought severe challenges to the traditional real-time calculation of security correction based on traditionalmodels.Considering the limitation of computational efficiency regarding complex,physical models,a data-driven power system security correction method with UPFC is,in this paper,proposed.Based on the complex mapping relationship between the operation state data and the security correction strategy,a two-stage deep neural network(DNN)learning framework is proposed,which divides the offline training task of security correction into two stages:in the first stage,the stacked auto-encoder(SAE)classification model is established,and the node correction state(0/1)output based on the fault information;in the second stage,the DNN learningmodel is established,and the correction amount of each action node is obtained based on the action nodes output in the previous stage.In this paper,the UPFC demonstration project of NanjingWest Ring Network is taken as a case study to validate the proposed method.The results show that the proposed method can fully meet the real-time security correction time requirements of power grids,and avoid the inherent defects of the traditional model method without an iterative solution and can also provide reasonable security correction strategies for N-1 and N-2 faults.
文摘Flexible alternating current transmission system(FACTS)components are used to utilize the electrical transmission lines at their optimum capacity.The best way to achieve this optimization is to manage the active and reactive power flows.A unified power flow controller(UPFC)is one of the most significant devices developed for the effective control of power flows.Although conventional UPFC structures can be used to achieve this process,the expansion of power systems has led to the necessity of developing various UPFC devices.This paper focuses on an advanced real time control approach of UPFC for dynamic voltage regulation.The developed model is incorporated in the Gauss-Seidel(GS)power flow algorithm and the proposed method is validated on the IEEE-30 bus system that is designed under MATLAB/Simulink platform.As the proposed method was validated by comparing with the normal operating conditions,advantages were observed on two cases.In the first case,a generator outage is applied to system to observe behavior of proposed model in power loss conditions.In the second case,line fault conditions were used for observation.The results from testing the model for both cases prove that the approach has positive effects on dynamic power systems.
文摘基于传统的比例—积分控制,提出了统一潮流控制器(unified power flow controller,UPFC)并、串联侧解耦的系统级控制策略,其控制目的是在并联侧维持UPFC并入点的交流电压和直流侧电容电压,在串联侧控制线路有功、无功潮流。文章首先介绍了所研制的UPFC实验系统平台,并在此基础上详细地给出了UPFC系统级控制器的硬件实现,实验平台的通用性决定了不同控制策略可以较容易地实现。为验证所提出的控制策略的控制效果,文中将UPFC实验装置嵌入至自行搭制的等效双机实验系统中,实验结果与PSCAD/EMTDC仿真环境下的时域动态仿真结果十分相似,从而得到了良好的UPFC动态特性。
文摘为了将统一潮流控制器UPFC(unified power flow controlle)r嵌入到商业软件中,采用节点注入电流法建立了UPFC的潮流控制模型。该模型通过控制UPFC串联侧节点的注入电流和并联侧节点的无功注入电流来控制线路潮流和UPFC接入点母线电压,其中,串联侧节点的注入电流通过功率目标方程直接求取,并联侧节点的无功注入电流通过引入被控母线电压的参考值与实际值的偏差求得。基于电力系统分析综合程序PSASP(power system analysis software package)进行了算例研究,结果表明所建模型能有效实现UPFC的潮流控制作用,且具有较快的潮流追踪速度和较高的收敛精度。对其他FACTS(flexible AC transmission system)器件的控制建模具有一定的参考价值。